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Geodetic observations of both coseismic and interseismic surface deformation fields in the vicinity of subduc-
tion zones are frequently interpreted using simple elastic dislocation models (EDMs). The geometry of the
megathrust interface used in these models has a first order effect on their predicted surface deformation.
Here, we systematically explore the sensitivity of the surface velocity field predicted by EDMs both early
and late in the seismic cycle, to parameterizations of megathrust interface geometry, effective subducting
plate thickness, and gradual transitions in apparent plate coupling. We focus on how these parameterizations
affect the hingeline – the location where vertical velocities switch from subsidence to uplift – as well as the
location of the peak uplift rates. We find that these surface observables are much less sensitive to uncer-
tainties in dip at the downdip end of the seismogenic zone for realistic curved faults in comparison to planar
faults. For realistic megathrust geometries (planar or curved) having gradual transitions in apparent plate
coupling, we find that the extent of locking is best approximated at the surface by the location of peak uplift
rates. Therefore, the common notion – based on shallow-dipping planar faults – that the hingeline is located
directly above the maximum depth extent of the locked plate interface is generally incorrect. Using the
hingeline as the basis for coupling may lead to a significant underestimation of seismic hazard early in the
cycle, as well as during the interseismic period. This analysis also demonstrates the importance of considering
both vertical and horizontal velocities for determining seismic source extents, as well as interseismic cou-
pling, on the megathrust. The tradeoffs presented here between the geometry of the megathrust and fault
coupling along its surface can assist in the planning of campaign-GPS or field geologic surveys, and help im-
prove seismic hazard estimates in active subduction zones.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

At subduction plate boundaries, geodetic data from the inter-
sei-smic period – decades to centuries after amegathrust earthquake –
help to delineate regions of the megathrust that are not presently
slipping (i.e., apparently coupled) and can potentially produce large
earthquakes. Similarly, field geologic surveys of coastal uplift and
subsidence in the weeks to months following an earthquake (as well
as geodetic data, where available) can help delineate the extent of its
rupture area on the megathrust. Due to observational, theoretical,
and computational considerations, such data are frequently interpreted
using elastic dislocations embedded in the halfspace (henceforth re-
ferred to as elastic dislocation models, or EDMs). The simplest of these
EDMs, the backslipmodel (the BSM, see Savage, 1983), has beenwidely
used inmodeling interseismic period geodetic data in subduction zones
es, National Taiwan University,
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(e.g., Khazaradze and Klotz, 2003; Savage, 1995; Suwa et al., 2006;
Wang et al., 2003; Zweck et al., 2002). The BSM can essentially be
described with only a few parameters — the extent and distribution of
the apparently locked areas along the fault interface, and the fault
geometry. The BSM is motivated by the recognition that for mature
subduction zones, the over-riding plate experiences little permanent
inelastic deformation on time scales relevant to the seismic cycle (less
than a few thousand years) (see Savage, 1983; Wang and Hu, 2006).
Thus, to first order, the interseismic deformation field late in the
seismic-cycle must cancel the sum of the coseismic and postseismic
deformation fields (Savage, 1983, 1995).

In a previous study, we demonstrated that the BSM is an
end-member case of a more realistic elastic subducting plate model
(the ESPM, Kanda and Simons (2010)). We showed that the BSM is
equivalent to: (a) an ESPM having ‘zero’ plate thickness; or (b) an
ESPM of finite elastic thickness, in which plate bending stresses are
continually being released — either aseismically, or episodically at
great depths (>100 km). We also demonstrated that the BSM
would fit available geodetic data as accurately as the ESPM, owing
to the spatial distribution of current geodetic networks (i.e., starting
at a distance of 100–200 km landward of the trench). The assumption
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of an elastic halfspace has also been relaxed (e.g., Savage, 1998), but
surface velocity fields predicted by layered EDMs (as well as their
spatial gradients) are not significantly different from those for the
homogeneous halfspace. Including the significant contrast in material
properties between the subducting and overriding plates results in a
stiffer system that overpredicts horizontal velocities near the trench
by 20–25%, compared to homogeneous elastic half-space models
(assuming identical fault slip distributions: e.g., Hsu et al., 2011;
Masterlark et al., 2001). However, as illustrated in these papers,
this overestimation diminishes rapidly towards the coastline. Most
significantly, these material property contrasts have only a negligible
effect on the predicted vertical velocities (e.g., Fig. 5 of Hsu et al.,
2011) and associated surface observables that form the basis of our
sensitivity analysis. Therefore, owing to their simplicity as well as
success in fitting current geodetic observations, the analysis presented
here is entirely based on EDMs in a homogeneous halfspace.

The hingeline associated with coseismic rupture – the location
where vertical displacements switch from uplift to subsidence at
the surface – is typically estimated from field geologic surveys or
campaign-GPS observations immediately following amegathrust earth-
quake. This coseismic hingeline is frequently interpreted using simple
EDMs to infer the extent of coseismic-rupture over the megathrust
(or downdip end of the locked-zone). Such rupture extents have been
used to estimate: (i) future hazard for local coastal communities in
potential megathrust rupture areas (e.g., Meltzner et al. (2006),
Natawidjaja (2003), Subarya et al. (2006), Taylor et al. (2008));
(ii) the contribution of megathrust earthquakes to long-term coastal
uplifts (e.g., Biggs et al. (2007), Delouis et al. (1998), Ortlieb et al.
(1996), Vargas et al. (2011)); and (iii) repeated deposition of organic
matter over multiple seismic cycles, which is of practical interest in the
petroleum industry (e.g., Dorobek, 2008). The hingeline during the
interseismic period – the location where vertical velocities switch from
subsidence to uplift at the surface – is typically estimated from geodetic
data late in the seismic-cycle. This interseismic hingeline is also often
interpreted using simple EDMs to infer regions of slip-deficit (apparent
locking) on the megathrust (e.g., Suwa et al., 2006). However, with the
recent explosion in the spatio-temporal coverage of geodetic data,
more sophisticated dislocation models have been used in geodetically
constrained inversions of both coseismic and postseismic slip (e.g.,
Biggs et al., 2007; Chen et al., 2009; Hsu et al., 2006; Miyazaki et al.,
2004; Simons et al., 2011), as well as modeling of slip evolution on
fault surfaces (e.g., Hetland and Simons, 2010). 3D slip inversions
show that coseismic rupture sources (‘asperities’) are frequently com-
pact (e.g., Briggs et al., 2006; Koketsu et al., 2004; Sladen et al., 2009),
and seem to be surrounded by transition zones that undergo afterslip
in the early part of the seismic cycle following a rupture (e.g., Biggs et
al., 2007; Chen et al., 2009; Hsu et al., 2006; Miyazaki et al., 2004).
Thus, regions on the fault surface that have undergone afterslip appear
to occupy a diffuse region (the ‘stress-shadow’ region) around ruptured
asperities. These regions do not undergo significant slip late in the
seismic cycle, and are apparently locked during the interseismic period.
However, the above analyses do not consider the strong tradeoff
between the assumed fault geometry and inferred slip distribution.

In this paper, we want to understand how the hingeline, as well as
other key features of the surface deformation field, are influenced by
fault geometry and the assumed slip distribution. We systematically
explore the sensitivity of the predicted surface deformation field to
parameters of the ESPM and the BSM: subduction thrust geometry,
the extent of the locked zone, width of the slip-transition zone
(which approximates the integrated effects of afterslip and anelastic
deformation downdip of the locked zone), and the plate thickness.
In particular, we focus on the key characteristics (“observables”) of
the vertical component of the interseismic velocity (or coseismic
displacement) field: locations of the hinge-line, and the location of
maximum uplift rate (or maximum subsidence). We approximate
the diffuse interseismic ‘stress-shadow’ regions discussed above by
a transitional zone around locked asperities, within which the
slip-rate increases from zero (at the inner, asperity edge) to the full
plate convergence rate (at the outer edge). Thus, during the inter-
seismic period, the apparent locked zone may include regions on
the megathrust that slipped during the coseismic as well as the
postseismic periods. The slip-transition zone surrounding a historic
asperity represents a conditionally stable region that may rupture
coseismically during future, "mega"-events spanning multiple
asperities [such as the 2011, M9 Tohoku-oki (Japan) earthquake
(e.g., Simons et al., 2011)].

While our analysis focuses on the interseismic velocity field, our
results can be directly applied to the co- and post-seismic displace-
ment fields for the following reasons. If we assume zero net deforma-
tion of the over-riding plate over the seismic-cycle (as in the BSM), the
combined co- and post-seismic (or “early-cycle”) surface deformation
must equal the interseismic (or “late-cycle”) deformation. Therefore,
the locations of surface observables for the late-cycle velocity field
are identical to those for the early-cycle displacement field — except
that the location of maximum late-cycle uplift rate corresponds to
that for maximum early-cycle subsidence. In the intuition building
“toy” models described here, we only focus on cross-sectional varia-
tions in fault geometry and coupling. The 2D analysis presented here
allows us to build intuition about the first-order effects of megathrust
geometry, without adding additional 3D complexity (e.g., along strike
variations) to the problem — i.e., as a first order exploration of the
deformation fields at different stages of the seismic cycle.

2. Methodology

For computing surface velocity profiles, we use the 2-D elastic
dislocation solutions for a dip-slip fault embedded in an elastic
half-space given by Freund and Barnett (1976), as corrected by Rani
and Singh (1992) (see also, Tomar and Dhiman (2003) and Cohen
(1999)). For simplicity, we assume that the backslip velocity vector,
Vb, is uniform and constant over the locked zone, and varies linearly
as a function of arc-length over the slip transition zones immediately
updip and/or downdip of the asperity. For each profile, we assume
that the origin is at the trench, the x-axis is positive landward of the
trench, and the z-axis is positive upwards (so depths within the
half-space are negative). Dips are positive clockwise from the positive
x-axis. Uplift is considered positive for the vertical component of the
surface velocity field, and landward motion is considered positive for
the horizontal component. The Notation section at the end of this
paper contains an explanation of the variables used in our analysis.

Here, we consider planar faults as well as simply parameterized
curved fault geometries (a constant curvature arc, or a parabolic pro-
file with decreasing down-dip curvature) passing through the origin
(the trench). Further, we assume nearly zero dip at the trench for
curved faults. We also consider faults with a single kink (because of
their common usage as well as simplicity) and find that their surface
velocity predictions can be related to equivalent planar faults. For pla-
nar faults, it is straightforward to relate slock for an asperity to either
the depth of its downdip edge, Dlock, or the horizontal distance from
the trench to the surface projection of this downdip limit, xlock. The
simple parameterizations used to generate curved faults result in
their arc-length, s, being proportional to their surface projections, x.
In addition, our assumption that the bottom-most segment of curved
faults (i.e., beyond the fully locked section) is a semi-infinite tangen-
tial segment (e.g., top panels of Fig. 2a–d) results in xmax and xhinge
being strongly influenced by its dip (e.g., compare profiles of fault-F
and fault-d in Fig. 3a; also see discussion in the next section). This as-
sumption of a linear bottom segment is reasonable because as will be
seen in the next section, any curvature downdip of the locked zone
does not impact surface deformation profiles over an individual seis-
mic cycle (either during the coseismic or the interseismic periods).
Since a larger downdip extent (or arc-length) for the fully locked
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Fig. 1. Schematic illustration showing the relative locations of surface observables, xhinge,
xlock, and xmax, using a typical vertical velocity profile from slip on a locked patch located
along a curved fault.
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region of the curved fault, slock, leads to a steeper dip for this
semi-infinite segment, this dip is taken as the characteristic dip of a
non-planar fault for comparison with planar faults. Therefore, xhinge,
xlock and xmax for curved faults are also implicitly “proportional” to
slock. We approximate these curved faults by a number of discrete
(“infinitesimal”) tangential line-segments. The predictions for curved
faults are thus a superposition of the solutions for a sufficiently large
number of tangential edge-dislocations, each corresponding to the
local dip and depth of the true fault interface. The superposed curved
fault solutions converge rapidly with increasing number of segments.
However, in order to minimize the size of regions experiencing
singular strain-rates due to segment slope discontinuities (“kinks”),
a finer discretization is required. For typical fault curvatures used
here, we found that 100 segments were sufficient to restrict such
singularities to within a few hundred meters of the kinks.

We also tested the effect of finite along-strike width of the locked
asperity,W, using the elastic dislocation solutions presented in Okada
(1992). We compared the 2D (or “infinite width”) surface velocity
predictions with those for asperities with W between one and ten
times their along-dip extents, slock (i.e., aspect ratio, Fasp=W /slock=
1 to 10). We found that the trench-perpendicular velocity profiles
(and corresponding strain-rates) along transects across the centers
of these asperities were nearly indistinguishable from the 2D
solutions for Fasp>3. Also, peak uplift rates along these profiles
were significantly smaller only for asperities with Faspb3, and that
too, for only steeply dipping faults (>45°, for which peak uplift
rates were smaller by over 50%). For Fasp equal to 1, the hingeline
shifts landward by less than 5% for shallow dipping faults (dipb15°)
and 20% or more for very steep faults (dip>45°). This shift is
nonlinear with respect to fault dip, and is much more pronounced
for steep faults. The nonlinear relationship results in a narrowing of
the range of fault dips over which the hingeline can be used as a
proxy for fault locking extent (see Section 4 for a discussion of these
fault dip ranges). This narrower range further strengthens our conclu-
sion that other observables (e.g., location of peak uplift-rate) are
more appropriate for estimating the size of the locked zone. As Fasp in-
creases from 1 to 3, these hingeline shifts are reduced by as much as
50% over the entire range of dips considered. So, except when Fasp≤1,
and/or an asperity is located along a steeply dipping fault interface,
the 2D profiles of slip and surface velocity presented here are a
good approximation of trench-perpendicular cross-sections of the
respective 3D fields predicted for a realistic (finite-width) asperity,
along a transect passing over its center.

The 2D cross-sectional analysis here can be easily extended to real
3D megathrust interfaces, with geometry and apparent coupling
varying along the strike of the trench axis. In the following sections,
we first illustrate the surface velocity profiles in the presence and
absence of slip-transition zones. We then consider the sensitivity of
the surface observables determined from these velocity profiles – the
hingeline, xhinge, and location of maximum uplift rate, xmax – to the
megathrust interface geometry as well as the assumed slip distribution.

3. Surface velocities predicted by EDMs

In this section, we discuss the surface velocities predicted by the
BSM and the ESPM for a realistic megathrust interface profile, both
with and without slip-transition zones. The formal sensitivity analysis
for planar as well as curved faults is discussed in the following
section. Fig. 1 schematically illustrates a typical profile of the vertical
interseismic surface uplift-rate along a trench perpendicular transect
across themegathrust interface for a locked zone of length slock, without
a surrounding slip-transition zone. The surface observables, xhinge and
xmax, are schematically located relative to the extent of the locked
zone on the megathrust interface. As noted previously, xmax for the
interseismic period corresponds to location of maximum subsidence,
xmin, during the coseismic and early post-seismic period. Notable
features of the surface displacement rates predicted for locked asperities
without slip-transition zones include (see black profiles in the middle
and bottom panels of Fig. 2a–d): (i) maximum strain-rates above the
region of highest curvature of the fault profile; (ii) zero strain-rates,
and peak uplift rates, roughly above the downdip end of the locked as-
perity; and (iii) low horizontal strain-rates in the vicinity of the trench.

For intuition building purposes, we first discuss the effect of kinks
and curvature (i.e., non-planar locked zones) on surface velocity predic-
tions (Fig. 3).We start with a locked patch along a curved fault interface
and approximate it with two planar segments intersecting at a kink.We
compare surface velocity profiles predicted by the resulting kinked fault
when these two segments intersect successively deeper along the
curved fault interface (i.e., the kink moves closer to the bottom of the
locked patch). We also choose three different planar fault approxima-
tions to the kinked fault: (i) fault-s: a shallow fault coinciding with the
upper segmentof thekink, but having the same overall extent of locking,
slock, as the kinked fault, (ii) fault-d: a fault tangential to the downdip
end of the locked patch— i.e. parallel to the lower segment of the kinked
fault, and having the same Dlock, that intersects the free-surface
landward of the trench, and (iii) fault-m: a fault patch with its top and
bottom edges coinciding with the trench and Dlock, respectively, so its
slope is the same as the mean slope of the two kink segments.

At distances beyond 2Dlock landward from the trench, the surface
velocity profile due to locking along a curved interface (fault-F,
Fig. 3a) can be approximated by locking along a planar fault tangen-
tial to that interface near the bottom of the locked zone (fault-d,
Fig. 3a; see Kanda and Simons (2010) for a more extensive discus-
sion). If we approximate this curved fault by a kinked fault with
two planar segments of roughly equal size, (fault-F, Fig. 3b), we find
that the latter's surface velocity predictions are very similar to those
for the curved fault at distances beyond 2Dlock from the trench. At
these distances, the velocity profiles predicted by both faults (includ-
ing surface observables, xhinge and xmax) are identical because fault-d
directly overlaps with the lower segment of fault-F (Fig. 3b). Also be-
cause of its partial overlap with fault-F, fault-s also matches the
former's predictions, but only in the far field (>4Dlock from the
trench, Fig. 3b). The large strain-rates directly beneath the kink
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(represented by large slopes of the thick gray curves in the bottom
two panels of Fig. 3b) are highly localized and do not propagate
farther landward. Approximating the curved fault by another set of
planar faults so that the kink is located deeper and closer to the
bottom of the locked patch, we find that fault-s and fault-m approxi-
mate the surface observables for fault-F exceedingly well (Fig. 3c),
even though none of the planar faults fit the surface velocity profiles
of the kinked fault particularly well except in the far-field (>4Dlock

from the trench). Fault-m is the best overall estimator for the surface
velocity profile of fault-F in this case. In the limiting case of a kink at
the bottom of the locked interface (Fig. 3d), fault-m and fault-s are
identical to the locked patch, and predict identical velocity profiles
to fault-F. In summary, surface observables for kinked faults can be
almost exactly estimated from those for the equivalent planar faults
using: (a) fault-d, if the kink is shallower than Dlock/2, or (b) fault-m
(or fault-s), if the kink lies between Dlock/2 and Dlock. Therefore we
do not present a separate analysis for kinked faults here.

Our discussion so far considered locked patches across which slip
transitions abruptly to zero. However, it is physically implausible
for an abrupt transition from locked to creeping at the edges of a
rupture asperity, as a simple EDM such as the above would imply.
Stress concentrations would be too high for the material to behave
elastically (e.g., Scholz, 1990). Simulations incorporating a frictional
fault (rate-strengthening, or conditionally stable) between fully elastic
hanging- and foot-walls suggest that suchhigh stress concentrations re-
sult in the formation of a diffuse ‘stress-shadow’ region surrounding the
locked zone due to high afterslip-rates early in the seismic cycle (e.g.,
Hetland and Simons, 2010). Recent studies also seem to infer that re-
gions surrounding coseismic ruptures (i.e., asperities and afterslip/post-
seismic-slip zones) experience significant slip relatively early in the
seismic cycle (e.g., Biggs et al., 2007; Chen et al., 2009; Hsu et al.,
2006; Miyazaki et al., 2004; Perfettini et al., 2010). However, a large
multi-asperity earthquake can still rupture these stress-shadow regions
around constituent asperities, as illustrated by the 2011,M9Tohoku-oki
earthquake. Therefore, the downdip limit of seismic activity along the
megathrust interface may extend deeper than an individual rupture.
This downdip limit is thought to be thermally controlled (Hyndman
and Wang, 1993) and experience time-dependent inelastic deforma-
tion. The width of such a thermal transition zone depends on the fault
rheology, and is thought to correspond to the 350° and 450° isotherms
(Hyndman and Wang, 1993). Therefore, the location of the transition
zone along the subduction interface strongly depends on both the
geometry as well as local thermal structure.

The presence of an updip slip-transition zone may be harder to de-
fend. For a subducting plate having a finite thickness, as represented
in the ESPM (Kanda and Simons, 2010), the steady motion of its bot-
tom surface can result in interseismic slip along the shallow portion
of the plate interface (at velocities less than or equal to the plate
convergence rate between the trench and depths of 5–10 km). Such
shallow slip would be a proxy for the shear strain transmitted by
the subducting plate to the frontal wedge, which is typically made
up of unconsolidated sediments that do not have significant internal
or basal strength. However, if the wedge were strong enough to sup-
port a conditionally stable megathrust interface (so elastic energy can
be stored at the interface over the seismic cycle), then this entire
shallow region updip of the asperity may be locked late in the seismic
cycle. In fact, recent simulations of slip evolution on megathrust sur-
faces predict that such slip early in the seismic cycle can generate sig-
nificant stress-shadow zones updip of seismic asperities, depending
on the chosen fault rheology as well as asperity depth (Hetland and
Simons, 2010). That there was significant shallow slip during the
2011, M9 Tohoku-oki (Japan) earthquake (e.g., Simons et al., 2011,
Fig. S10) seems to agree with the above predictions of an updip
stress-shadow region — implying that it may be more appropriate
to assume that late in the seismic cycle, the zone of apparent locking
can in places extend all the way to the trench (e.g., Wang et al., 2003).
Nevertheless, in this section, we present the surface velocity profiles
for an updip slip-transition zone because some modeling studies
(e.g., using campaign-GPS or coastal uplift/subsidence data) invoke
such a transition zone for explaining horizontal geodetic data close
to the trench (e.g., Natawidjaja, 2003; Sieh et al., 1999; Subarya et
al., 2006). Such a shallow slip-transition zone may be a proxy for
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a stress-shadow zone over the conditionally stable megathrust
interface updip of a seismic rupture.

As noted above, we approximate the above interseismic stress-
shadow ‘aprons’ around seismic asperities by a transition zone having a
monotonically decreasing slip deficit rate (as well as cumulative slip)
away from the asperity. Thus, a trench-perpendicular transect across
the center of such an asperity would show a locked zone experiencing
the full slip-deficit rate (i.e., equal to the plate convergence rate),
surrounded by updip and downdip ‘transition-zones’ where this rate
tapers linearly to zero. Here, we consider both the ESPM (of plate thick-
ness, H) and the BSM having (i) a lower transition zone of width, str,
along the plate interface downdip of the locked zone (or asperity),
and (ii) a shallow transition zone of width, sa, along the plate interface
between the trench and the updip limit of the locked zone (Fig. 2,
where the fractional transition zone widths are: ftr=str/slock=[0, 0.25,
0.5, 1], and fa=sa/slock=[0, 0.125, 0.25], are illustrated in shades of
red). For comparison, Wang et al. (2003) assumed a transition
zone whose width is as large as the locked zone for the Cascadia
subduction zone. Along a downdip transition zone, we model
slip-rate during the interseismic period as linearly increasing from
zero at the lower edge of the asperity to the long-term plate conver-
gence rate, VP, farther downdip. Such a tapered slip zone is only
partially slipping (creeping) during the interseismic period, but
also slips during the coseismic and postseismic periods. Along the
updip transition zone, we model interseismic slip-rate as linearly
a
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Fig. 4. Location of the maximum vertical velocity (xmax), zero vertical velocity (xhinge), the su
as a function of the length of the locked fault patch, s (=slock for both planar and curved f
along-dip extents of the locked zone, s=55, 75, 100, 125, 150, and 200 km. Thicker curves
across the s-curves from the top left to bottom right) are lines of constant locking depth (10
presented in dark yellow, but are almost exactly overlaid by the gray planar fault solutions c
curves (cutting across the s-curves from the bottom right to top left) are lines of constant
(a). Theoretical estimates for planar faults are also presented in the bottom two panels (ye
decreasing from a finite value (VP) at the free surface, to zero just
updip of the asperity.

A downdip transition zone with tapered slip - representing a condi-
tionally stable region downdip of the asperity that is susceptible to
future ruptures - increases the effective slock of the ESPM or the BSM.
Therefore, the surface velocity profiles from dislocation models with a
transition zone show deformation occurring over a broader region (or
longer wavelength) than those for models having no transition zone
(Fig. 2a,b). As a result, the slopes of both the vertical and horizontal
velocity profiles (i.e., surface strain-rates) are shallower landward of
xlock, compared to those for models without a transition zone. Also,
the local extremum (when ftr=0), or flattening (when ftr>0), in the
horizontal velocity profiles (bottom panels, Fig. 2a,b) – roughly above
the downdip end of the apparent locked zone – is located farther from
the trench, and entirely disappears as the transition zone width
increases (for ftr≥0.5 here). So, using strain-rates (slopes of the velocity
profiles) to locate the extent of the locked zone is not robust.More com-
plex models have been invoked in interpreting such shallow slopes and
broader wavelength deformation observed in horizontal velocities
landward of xlock (e.g., Williams and McCaffrey, 2001). Thus, vertical
velocities (displacements) at the surface are more diagnostic of
the extent of xlock during the interseismic (coseismic+postseismic),
compared to the horizontals. In addition, verticals are also less prone
to reference errors, providing more robust constraints on model
parameters (e.g., Aoki and Scholz, 2003; Métois et al., 2012).
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llow curves) for comparison.



Table 1
Theoretical estimates for the horizontal distance between the trench and the surface
projection of the downdip end of the locked patch, xlock, for planar and curved faults
locked up to the trench. Planar, circular, and parabolic refer to geometric approximations
of the megathrust cross-section. Dips for curved faults correspond to the slopes of their
mean tangent planes between the seismogenic depth and 100 km.

Fault type Dip range Uncertainty in Xlock location

Planar fault 0°–27° (0.9–1.1) �X a

27°–50° (0.9–1.6) Xhinge

Curved fault (circular/parabolic) 0°–37° (0.95–1.05) �X a

37°–50° (0.95–1.1) Xhinge

a �X ¼ XhingeþXmax

2

� �
.

Table 2
Theoretical estimates for the horizontal distance between the trench and the surface
projection of the downdip end of the locked patch, xlock, for planar and curved faults
having a transition in apparent coupling downdip of the locked zone. The results
here are for a transition zone width of 25% of the length of the locked zone, slock.
Dips for curved faults correspond to the slopes of their mean tangent planes between
the seismogenic depth and 100 km.

Fault type Dip range Uncertainty in Xlock location

Planar fault 0°–25° (0.9–1.1) xmax

25°–32° (0.95–1.1) �X a

32°–50° (0.9–1.4) Xhinge

Curved fault (circular/parabolic) 0°–27° (0.93–1.03) xmax

27°–35° (0.95–1.0) �X a

35°–50° (0.9–1.1) Xhinge

a �X ¼ XhingeþXmax

2

� �
.
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An updip transition zone, sa, does not significantly affect the vertical
surface velocity profiles predicted by either the ESPM or the BSM, at
typical distances landward of the trench where most GPS stations are
located (Fig. 2c,d). This insensitivity to sa results from the shallow dip
typical of most plate interfaces near the trench, which causes
surface velocity perturbations (and strain-rates) to localize directly
above the downdip end of these transition zones. This localization due
to the shallow dip of curved faults near the trench is illustrated by the
short wavelength (large strain-rate) character of velocity profiles for
fault-s (dotted curves) in Fig. 3a. This localization of strain-rates near
the trench is more marked in the horizontal velocities (bottom panels
of Fig. 2c,d), where the velocities landward of xlock are clearly not affect-
ed significantly by sa. As noted above, such strong gradients in the
horizontals have been observed where geodetic data are available
closer to the trench (e.g., Sumatra: Natawidjaja, 2003; Sieh et al., 1999;
Subarya et al., 2006), perhaps indicating ongoing updip postseismic
slip – or frictionally stable rheology – updip of the locked zone.

The ESPM and the BSM surface velocity profiles are equally sensi-
tive to a change in str (assuming identical geometry and long-term
plate convergence velocity; Fig. 2a,b). However, owing to the strong
sensitivity of verticals to the effective plate thickness, in addition to
str, such profiles can still discriminate between the ESPM and the
BSM. Therefore, for a given subduction interface geometry, vertical
surface velocities are the key to not only differentiating between the
ESPM and the BSM (i.e., whether geodetic data require a finite effec-
tive elastic plate thickness), but also the location of the effective
xlock. In addition, for most subduction zones or thrust faults (typically
dipping at anglesb40° at depths shallower than 100 km), surface
Fig. 5. Dimensionless plots of the variation in the location of xmax and xhinge as a function of f
(c, d) or without (a, b) a transition zone (of fractional length, ftr=25%) downdip of the locke
(Δxm*) as a function of the dip of the BSM fault; middle panels: dimensionless relative dis
panels. Theoretical estimates for planar faults without any transition zone (thick gray lines
nates are dimensionless, and expressed as positive and/or negative percentages of xlock.
seismogenic zone for some of the major subducting plates around the world (in 5°-bins, co
horizontal velocities are much larger than the vertical velocities, and
therefore have a much better signal-to-noise ratio. However, while
uncertainties in the observed horizontal velocities are smaller than
those for the verticals (sometimes by at least a factor of two), they
are more susceptible to reference frame errors. If the BSM were
used to fit interseismic geodetic data at a subduction zone where
plate-bending is important (thick lithosphere, or large curvature),
we would expect that the best-fit BSM will underestimate θ (or over-
estimate slock), in order to fit the longer wavelength profile predicted
by the ESPM (Kanda and Simons, 2010).

4. Sensitivity of EDM predictions to fault geometry and transition
zone extents

The cross-sectional geometry of the plate interface has a first order
effect on the surface velocity predictions of EDMs, because of their
strong dependence on the dip as well as depth of the dislocation
below the free surface. In view of the wide applicability of the BSM, it
is important to understand the sensitivity of surface observables (xhinge
and xmax) to parameterization of the BSM, especially interface geome-
try. Besides, field geologic studies of seismic cycle deformation
frequently assume that the location of the hinge-line or pivot-line coin-
cides with the downdip extent of coseismic rupture (i.e., xhinge≈xlock,
e.g., Meltzner et al. (2006), Natawidjaja (2003), Subarya et al. (2006),
Taylor et al. (2008)). We explore the sensitivity of these surface
observables to fault geometry — specifically, we quantify how the
relative distance between xlock and xhinge or xmax (as well as the average
of these distances) varies with fault dip, θ, for generalized fault
geometries.

We start with the analytical expression for the surface vertical
uplift rate due to an edge-dislocation in a half-space, normalized by
the geologic plate convergence rate, Vp, vz*, as a function of trench
perpendicular distance, x, dip, θ, and downdip extent of locked fault,
s (corrected version of Freund and Barnett (1976) — see Savage
(1983), and Rani and Singh (1992)):

vz
� ¼ vz

Vp
¼ sin θð Þ

π ⌊
xs: sin θð Þ

x2 þ s2−2xs: cos θð Þ

� �

þ tan−1 x−s: cos θð Þ
s: sin θð Þ

� �
−π

2 ⌋: ð1Þ

To find the hinge-line location, xhinge, we set the above equation to
zero, and solve the resulting transcendental equation numerically
using a non-linear root finding algorithm. Although not obvious
from the above equation, for nearly vertical faults (as θ tends to
90°), xhinge tends to infinity, and as θ tends to 0°, xhinge tends to a
value close to (but less than) s. As Savage (1983) showed, the location
of the peak uplift rate obtained by differentiating Eq. (1), is

xmax ¼ s
cos θð Þ : ð2Þ

For nearly vertical faults, (as θ tends to 90°), xmax tends to infinity
(but at a faster rate than xhinge) and as θ tends to 0°, xmax tends to s. As
discussed previously, the depth of locking, Dlock, for planar faults
equals s·sin(θ), and the surface projection of the bottom of their
locked zone is,

xlock ¼ s⋅cos θð Þ: ð3Þ
ault dip in the BSM having a planar (a, c) or curved (b, d) plate interface geometry, with
d megathrust zone. Top panels: dimensionless relative distance between xmax and xlock
tances between xhinge and xlock (Δxh*); bottom panels: mean value of plots in top two
from part (a)) are repeated for each panel of (b), (c) and (d) for comparison. All ordi-
Also shown in (b, d) are inferred megathrust interface dips near the bottom of the
mpiled from various sources — see text for details).
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For nearly vertical faults (θ tending to 90°), xlock tends to zero, but
at a much slower rate than the rapid increase of either xmax or xhinge;
as θ tends to 0°, xlock tends to s. For the analysis here, we choose as our
independent parameters — the downdip extent of locked fault, s, and
fault dip, θ, which naturally fall out of the analytical solution (Eq. (1)).
Surface observables for planar faults (from the last three equations)
are plotted in Fig. 4a (in yellow, but are exactly overlaid by the
corresponding numerical solutions as discussed below). For curved
faults, faults with downdip transition zones, as well as the ESPM,
we first compute the vertical surface velocity field (vz), for every com-
bination of θ and s, at a resolution of 0.5°×50 km. We numerically
compute the locations of both the hinge-line (vz=0) and maximum
vertical uplift rate (vz′=0) — the results for curved faults are dis-
played in Fig. 4b. As a verification of our numerical procedure, notice
that the yellow theoretical solutions for planar faults are not visible
because they are exactly overlaid by the gray (numerical) solutions
(Fig. 4a, all five panels). These same theoretical planar fault solutions
are also plotted in the bottom two panels of Fig. 4b (yellow curves)
for comparison with curved fault solutions.

We approximate the shallow dip typical of most megathrust inter-
faces near the trench by assigning zero dip to the curved fault profiles
used here, at their intersection with the free surface (i.e., the ‘trench’).
Irrespective of fault geometry, xlock monotonically decreases, and xmax

monotonically increases with increasing dip at the bottom of the
locked megathrust (slock, the distance from the trench to the bottom
of the seismic asperity along the fault interface). However, xhinge
first decreases, then increases with dip. Such concave upward depen-
dence with increasing dip implies that the hinge-line location
changes from being trenchward of xlock to landward of it (by 10–
20% of slock) depending on the megathrust interface geometry. Also,
comparing Eqs. (2) and (3) for planar faults, xmax≥xlock always
(Fig. 4a) – a relationship that also holds for curved faults in general
(Fig. 4b). The ratio, xhinge/xmax, varies between 70 and 90% for a
wide range of megathrust interface dips, irrespective of both the ge-
ometry as well as the presence of a transition zone. The sensitivity
of surface observables to uncertainties in dip at the bottom of the
locked zone is weaker for curved megathrust geometries compared
to the planar case — clearly illustrated by the relationships of peak
uplift and hingeline locations relative to xlock (yellow and black/gray
suite of curves, bottom panels of Fig. 4b). As a result, the loci of con-
stant locking depths for curved faults (blue curves, Fig. 4b) span a
wider range of dips compared to those for planar faults (blue curves,
Fig. 4a). For curved faults typical of most subduction zones (θ≤35°),
we found that the location of the surface observables do not differ sig-
nificantly between geometries having constant or varying curvature
(i.e., circular vs. parabolic approximations of the megathrust
interface). So, we do not show separate graphical results for varying
curvature, but instead encapsulate the main results in Tables 1 and
2. Henceforth, ‘curved’ is used synonymously with constant curvature
approximations of the megathrust. For typical curved megathrust
interfaces (θ≤35°), decreasing radius of curvature results in a steeper
dip near the bottom of the locked zone, affecting Dlock much more
than xlock or the other surface observables (red curves in Fig. 4b).
That is, Dlock is much more sensitive to the actual megathrust geome-
try than xlock.

Taking advantage of the proportionality of surface observables xhinge,
xlock, and xmax to the downdip extent of locking, slock – either explicitly
for planar faults, or implicitly for our parameterization of curved faults
(see Section 2 above) – we can divide the ordinates in Fig. 4 by xlock,
so that plots for different locking extents collapse into a single curve
for either fault geometry (black curves, Fig. 5).Wenow illustrate the de-
pendence of the BSM's xhinge and xmax as on the dip, θ, and arc-length,
slock, for planar faults without a downdip transition zone (Fig. 5a),
curved faults without a downdip transition zone (Fig. 5b), planar faults
having a downdip transition zone (Fig. 5c), and curved faults having a
downdip transition zone (Fig. 5d). We do not consider updip transition
zones further because of their negligible effect on the locations of our
chosen surface observables (Section 3, and Fig. 2c–d). Within each
part of Fig. 5, the top panel presents the relative dimensionless distance
between xmax and xlock,

Δxm ¼ xmax−xlockð Þ=xlock: ð4Þ

The middle panel presents the relative dimensionless distance

between xhinge and xlock,

Δxh ¼ xhinge−xlock
� �

=xlock: ð5Þ

The bottom panel presents the relative distance of themean of xhinge
and xmax, from xlock— i.e., mean of Eqs. (4) and (5),ΔXM=(Δxm+Δxh)/
2=[(xhinge+xmax)/2−xlock]/xlock.

For the BSM, ranges of dip within which xhinge, xmax, or some com-
bination of the two is a ‘good predictor’ of the location of xlock (i.e., with
uncertainty≤±10% of xlock) are highlighted using gray boxes in Fig. 5
and encapsulated in Table 1 (for faults without any downdip transi-
tion zone) and Table 2 (for faults with a downdip transition zone,
ftr=25%). For the more realistic curved megathrusts (Fig. 5b,d), we
also indicatemajor subduction zones around the world corresponding
to each dip-range (compiled from Engdahl et al., 2007; Lallemand et
al., 2005; Parsons et al., 1998; Syracuse and Abers, 2006). For the
ESPM (not shown), we find that the variation of the above dimension-
less parameters with dip angle is qualitatively similar to that for the
corresponding BSM, but with larger uncertainties.

For shallow dips characteristic of most subduction zones (θ≤30°
irrespective of geometry), xhinge is located trenchward of xlock (so,
Δxh is negative), while xmax lies landward of it (Δxm is always posi-
tive), but almost equally distant — irrespective of the extent of slock
(top and middle panels, Fig. 5a,b). We find that the mean of these
two values, represented by ΔXM, to be a good estimator of xlock
for shallow dipping interfaces (bottom panels, Fig. 5a,b) — to within
±10% for planar faults and only half that uncertainty, or ±5%, for
curved faults. For steeper dips (30°bθ≤50°), both xhinge and xmax lie
on the same side of xlock, with the former being much closer to it
(Fig. 4). Therefore, xhinge is a better estimator of xlock compared to
xmax only for such steep plate interfaces (middle panels, Fig. 5a,b).
For shallow dipping interfaces, using xhinge as a proxy for xlock can result
in significant underestimates of the extent of locking. For example, for
slock of 200 km, the discrepancy between xhinge and xlock can be as high
as 40 km. It is interesting to note that for planar faultswithout slip tran-
sition zones, xhinge is the best estimator of xlock for dips in the range of
27°–37° (middle panel, Fig. 5a). This range of dips includes some of
the longest studied subduction zones — e.g., northern Japan (Honshu
and S. Kuriles), Alaska, and Chile. So, the common notion that the
hingeline coincides with the downdip extent of coseismic rupture
(i.e., xhinge≈xlock) may have originated from early studies of these sub-
duction zones assuming planar megathrusts (e.g., Savage, 1983).

In the intuition-building toy models presented in Fig. 5c and d, we
only consider a single transition zone width that is 25% of the extent
of locked zone (equivalent to the ftr=0.25 case in Fig. 1a). The in-
crease in effective extent of locking, slock, due to a downdip transition
zone (of fractional width ftr, Fig. 1a,b), along with our parameteriza-
tion of xlock in terms of the extent of locking, implies that the effective
interseismic xlock also increases roughly by a factor of ftr irrespective of
the fault geometry. Therefore, in the presence of a downdip transition
zone, both Δxh and Δxm are negative for shallow dips (up to θ~25°–
30°, Fig. 5c,d, top panels) — that is, xhinge and xmax shift trenchward
from their locations for the BSM without transition zones. Thus, in
the presence of a downdip transition zone, xmax is closer to xlock
than xhinge, and a better predictor for xlock than any other surface ob-
servable (to within±10% for planar faults, and±5% for curved faults;
top panels, Fig. 5c,d). We find that doubling ftr roughly doubles the
uncertainty in the location of xlock using either Δxm, or the mean,
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ΔXM (results not shown here) — in other words, the uncertainty
boxes in Fig. 5c and d shift to the right towards steeper faults. There-
fore, for larger transition zones, the notion that xhinge~xlock may be
significantly incorrect. Further, the uncertainty in locating xlock accu-
rately from any of the above surface observables becomes large for
very shallow dipping fault interfaces (θ≤20°).

The presence of a bottom plate surface in the ESPM shifts xhinge
trenchward (see, Kanda and Simons, 2010). For shallow dips (θb20°),
the effect of plate bending is small, and the dimensionless parameter
curves xhinge are nearly identical to those for the corresponding BSM
plate interface geometry in Fig. 5. For steeper dips, xhinge is located
trenchward relative to that for the BSM having the same slock and θ.
Therefore, the distance between xhinge and xlock will be negative over a
wider range of θ, compared to the corresponding BSM. Also, xmax for
the ESPM with a finite plate thickness changes little from its value for
the ESPM having zero plate thickness (that is, the BSM) (Kanda and
Simons, 2010). The above results were confirmed for the ESPM having
planar or curved interface geometry and different plate thicknesses. In
general, we find that xlock for the ESPM can be constrained using the
same dimensionless parameters as those for the BSM (Tables 1 and 2),
for shallow dips (b20°). Even for the range, 20°bθb30°, the uncertainty
in estimating xlock using these tables is approximately only double that
for the correspon-ding BSM. However, for steeper dips, the uncertainty
in estimating xlock from the above surface observables increases signifi-
cantly for the ESPM, because of the strong effect of plate bending in that
model, unless additional assumptions are made regarding how such
bending stresses are accommodated (e.g., Kanda and Simons, 2010).

5. Conclusions

Here, we quantitatively compared the sensitivity of surface
observables predicted by EDMs, xhinge and xmax, to: (i) variations in
geometry of the megathrust interface, and (ii) tapered megathrust
slip distribution late in the seismic cycle (i.e., during the interseismic
period), expected due to postseismic slip over the region surrounding
the seismic rupture zone (‘asperity’, or ‘locked-zone’) following the
rupture. The results presented here for 2D “infinite” along-strike
locked patches can be directly applied to realistic locked patches
having finite widths unless such patches have aspect ratios less than
1, or are located along steeply dipping fault interfaces (>45°).

Predicted surface uplift rates and their gradients (i.e., surface
shear strains corresponding to thrust slip, εxz) are much more sensi-
tive to downdip transition zones than surface horizontal velocities
(and corresponding horizontal compressive strains, εxx). Transition
zones updip of seismic asperities impact horizontal velocities much
more than verticals, because the typically shallower dips near the tre-
nch localize much of the strain there. However, much of the resulting
stress accumulated updip of the seismic asperity is mostly dissipated
by the interseismic period (e.g., Hetland and Simons, 2010), unless
there is another asperity updip — e.g., the shallow asperity of the
March, 2011, Mw 9 rupture off Tohoku, Japan (Tohoku-oki; e.g.,
Simons et al., 2011, Fig. S10), located updip from previously ruptured
(and much smaller) asperities. Therefore, estimates of plate coupling
are best constrained using both vertical uplift rates (which are most
sensitive to the actual slip distribution), as well as horizontal veloci-
ties (which have high signal-to-noise ratio).

Surface observables such as xhinge and xmax are significantly differ-
ent for megathrusts with curved and planar fault cross-sections.
Further, all surface observables for a fault having a downdip slope
discontinuity (i.e., kinked fault) are well approximated by those for
either its shallowest or deepest locked segment, depending on the
depth of the kink. These observables are more sensitive to dip varia-
tions at, or near the downdip edges of seismogenic zones— especially
for planar and kinked faults, in comparison to curved faults. Slip
inversions should be carried out over as accurate a representation of
the fault geometry as possible for a given subduction zone, in order
to take advantage of this ‘robustness’ offered by megathrust interface
curvature.

The common notion that the hingeline coincides with the down-
dip extent of coseismic rupture may originate from early studies of
large subduction megathrust earthquakes in northern Japan, Alaska,
and northern Chile, which were approximated to have occurred on
planar faults dipping at~30° (plate interface geometry in Fig. 2).
For typical subduction zone geometries (curved megathrusts having
a dip≤30° at shallow depths, b100 km), and physically realistic,
smooth slip-deficit distribution around seismic asperities, it is the
location of the peak interseismic uplift rate, xmax (or the location
of maximum coseismic subsidence) – rather than the location of
the hinge-line, xhinge – that provides a good approximation for the
effective xlock. For steeper faults, the mean of xmax and xhinge provides
a better approximation for the effective xlock.

xhinge approximates the location of xlock only for the most steeply
dipping megathrusts (θ≥45°, e.g. Tonga-Kermadec) that have a
narrow slip transition-zone. However, for such steeply dipping fault
geometries, it is also important to consider the subducting plate
thickness (i.e., the ESPM), or along-strike width of the locked patch.
The difference between xmax and xhinge can be significant for most re-
alistic megathrust fault geometries, and can be as large as 50–100 km
for realistic asperities experiencing significant afterslip. This large
discrepancy when using xhinge to locate xlock will result in under-
estimating the seismic potential during the period immediately
following rupture, and may also underestimate such potential during
the interseismic (or preseismic) period. Therefore in addition to the
hingeline, field based surveys of seismic hazard in subduction zones
should also consider using the location of either the maximum
coseismic subsidence, or the peak interseismic uplift-rate.

Notation

D, Dlock, DL Depth of locking along the fault/plate interface
da Depth to bottom of updip transition zone, or to the updip

limit of locked zone
Fasp Asperity aspect ratio, Fasp=W/slock
ftr Fractional length of transition zone downdip of locked plate

interface, str/slock.
fa Fractional depth of updip transition zone w.r.t. locking

depth, da/Dlock.
H Thickness of the subducting plate in the ESPM
R, Rc Local radius of curvature for the centerline of the plate
s Arc-length along the plate interface, or along-dip distance

over the locked asperity
slock Along-dip extent of locked plate interface or asperity
sa Along-dip extent of the transition zone updip of the locked

plate interface
str Along-dip extent of the transition zone downdip of the

locked plate interface
Vx* Horizontal surface velocity, vx, normalized by plate rate, vx/Vp

Vz* Vertical surface velocity, vz, normalized by plate rate, vz/Vp

Vb, Vp Backslip/plate-convergence velocity along the megathrust
interface

W Along-strike extent of locked plate interface or asperity
x Horizontal coordinate, positive landward, or away from the

trench
x* Horizontal coordinate, normalizedw.r.t. locking depth, x/Dlock

xhinge Distance from the trench to the location of zero vertical
surface velocity

xlock Distance between trench and surface projection of the
downdip end of the locked zone

xmax Distance from trench to the location of the peak in the
vertical surface velocity field

z Vertical coordinate, positive upward (depths are therefore,
negative)
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z* Vertical coordinate, normalized w.r.t. locking depth, z/Dlock

Δxh Dimensionless distance between xhinge and xlock, (xhinge−
xlock)/xlock

Δxm Dimensionless distance between xmax and xlock, (xmax−
xlock)/xlock

ΔXM Mean of dimensionless relative distances Δxm and Δxh:
(Δxm+Δxh)/2

θ, θdip Fault/plate interface dip (for a non-planar fault, this is
measured at the bottom of the seismogenic zone)
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