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[1] Geodetic observations of interseismic surface deformation in the vicinity of
subduction zones are frequently interpreted using simple kinematic elastic dislocation
models (EDM). In this theoretical study, we develop a kinematic EDM that simulates plate
subduction over the interseismic period (the elastic subducting plate model (ESPM))
having only 2 more degrees of freedom than the well-established back slip model (BSM):
an elastic plate thickness and the fraction of flexural stresses due to bending at the trench
that are released continuously. Unlike the BSM, in which steady state deformation in both
plates is assumed to be negligible, the ESPM includes deformation in the subducting
and overriding plates (owing to plate thickness), while still preserving the correct sense of
convergence velocity between the subducting and overriding plates, as well as zero net
steady state vertical offset between the two plates when integrated over many seismic
cycles. The ESPM links elastic plate flexure processes to interseismic deformation and
helps clarify under what conditions the BSM is appropriate for fitting interseismic
geodetic data at convergent margins. We show that the ESPM is identical to the BSM in
the limiting case of zero plate thickness, thereby providing an alternative motivation for
the BSM. The ESPM also provides a consistent convention for applying the BSM to any
megathrust interface geometry. Even in the case of nonnegligible plate thickness, the
deformation field predicted by the ESPM reduces to that of the BSM if stresses related to
plate flexure at the trench are released either continuously and completely at shallow
depths during the interseismic period or deep in the subduction zone (below �100 km).
However, if at least a portion of these stresses are not continuously released in the shallow
portion of the subduction zone (via seismic or aseismic events), then the predicted surface
velocities of these two models can differ significantly at horizontal distances from the
trench equivalent to a few times the effective interseismic locking depth.

Citation: Kanda, R. V. S., and M. Simons (2010), An elastic plate model for interseismic deformation in subduction zones, J. Geophys.

Res., 115, B03405, doi:10.1029/2009JB006611.

1. Introduction

[2] At subduction plate boundaries, geodetic data from
the interseismic period (decades to centuries after a mega-
thrust earthquake) help to delineate regions of the mega-
thrust that are not presently slipping and can potentially
produce large earthquakes. Because of both observational
and theoretical considerations, such data are frequently
interpreted using simple elastic dislocation models (EDMs).
EDMs are in fact used for interpreting secular as well as
transient deformation in subduction zones [e.g., Savage,
1983, 1995; Zweck et al., 2002; Miyazaki et al., 2004; Hsu
et al., 2006]. The most common of the dislocation models
used for interpreting surface deformation in subduction
zones is the back slip model [Savage, 1983] (hereafter
referred to as the BSM, and depicted schematically in

Figure 1). The BSM was originally motivated by the
recognition that the overriding plate apparently experiences
little permanent inelastic deformation on the timescales
relevant to the seismic cycle (several hundred years) [see
Savage, 1983]. The BSM accomplishes this zero net strain
in the overriding plate by parameterizing interseismic fault
slip as normal slip, i.e., back slip, on the same patch that
also slips in the reverse sense during great earthquakes
[Savage, 1983]. Therefore, the seismic cycle is completely
described by two equal and opposite perturbations, abrupt
coseismic reverse slip cancels cumulative interseismic normal
slip (or ‘‘back slip’’) at the plate convergence rate. Thus, to
first order, the interseismic strain field and the sum of
coseismic and postseismic (afterslip) strain fields must
cancel each other and asthenospheric relaxation does not
significantly contribute to the interseismic deformation field
[Savage, 1983, 1995]. Further, it has been shown that the
predictions of interseismic surface velocities for a two
layered elastic half-space model (e.g., elastic layer over
elastic half-space) differ by less than 5% from those for a
homogeneous elastic half-space model [Savage, 1998].
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Similarly, the effect of gravity on the elastic field is also
very small (<2%, see [Wang, 2005]). In the case of linear
elastic layer over viscoelastic half-space models, data for the
interseismic period do not require asthenospheric relaxation,
and can be fit equally well by afterslip downdip of the
locked zone in an equivalent homogeneous elastic half-
space model [Savage, 1995].
[3] Thus, the BSM provides a first-order description of

the subduction process on the timescale of several seismic
cycles (on the order of 103 years) using only two parame-
ters: the extent of the locked fault interface and the plate
geometry (constant or depth-dependent fault dip). To be
precise, the BSM as intended by Savage [1983], assumed a
mature subduction zone, where plate bending and local
isostatic effects on the overriding plate are compensated
by unspecified ‘‘complex asthenospheric motions’’ [Savage,
1983, p. 4985]. These asthenospheric motions are assumed
not to play a role in surface deformation, and there is no net
vertical motion between the two plates at the trench. Thus,
the BSM as intended by Savage [1983] is purely a pertur-
bation superimposed over steady state subduction, with the
deformation fields due to coseismic slip (thrust sense) and
cumulative postseismic/interseismic slip (back slip) on the
locked portion of the fault canceling each other (Figures 1,
left, and 2, left). Therefore, the BSM does not include block
motion [Savage, 1983, p. 4985; J. C. Savage, personal
communication, 2009]. Henceforth, we use BSM to refer
to this original model, as intended by Savage [1983].
However, subsequent authors have interpreted the relative
steady state motion illustrated in Figure 1 of Savage [1983]
literally, assuming that steady state motion implies block
motion [e.g., Yoshioka et al., 1993; Zhao and Takemoto,
2000; Vergne et al., 2001; Iio et al., 2002, 2004; Nishimura
et al., 2004; Chlieh et al., 2008]. Henceforth, we use pBSM
to refer to this popular (mis-) interpretation of the BSM with
block motion (Figures 1, middle, and 2, middle). In the
pBSM, the interseismic back slip perturbation applied to the
locked zone is viewed as the difference between two elastic
solutions: (1) continuous steady state rigid block motion
along the plate interface and (2) continuous aseismic slip
along the plate interface downdip of the locked zone,
representing the interseismic strain accumulation process.
Thus, in the pBSM, the asthenosphere is primarily repre-
sented as two rigid fault blocks, and strain accumulation is
assumed to occur only at the upper boundary of the
subducting plate, specifically, as steady slip downdip of
the locked zone. The pBSM is unphysical in that on longer
timescales, the steady state block motion along the mega-
thrust interface between the two converging plates results in
net long-term uplift of the overriding plate, as well as an
unrealistic prediction of zero net strain in the downgoing
plate. Ad hoc arguments have been used to simply ignore
the vertical component of block motion, while including its
horizontal component to account for plate convergence.
From the perspective of implementation and interpretation,
the pBSM is also ambiguous when considering nonplanar
faults, i.e., where one should one impose back slip. Even
though the original BSM envisaged by Savage [1983]
postulates application of back slip directly to the locked
interface, irrespective of its geometry, this ambiguity arises
in the pBSM because assuming block motion along a
nonplanar interface leads to net deformation in the overrid-

ing plate over the seismic cycle (Figure 2, top middle),
violating the original BSM’s assumption of zero net defor-
mation there. As a result, several authors have either used a
fictitious planar fault tangent to the downdip end of the
locked zone to apply interseismic back slip [e.g., Simoes et
al., 2004; Chlieh et al., 2008], or have argued against the
use of the BSM for curved fault geometries [e.g., Chlieh et
al., 2004].
[4] In order to reconcile a plate view of subduction with

observed deformation over the seismic cycle, we propose
here a plate-like EDM for subduction zones, the ESPM, that
essentially differs from the BSM as well as the pBSM in the
form of the steady state solution (Figures 1, right, and 2,
right). The steady state ‘‘plate’’ solution in the ESPM is
simply the superposition of two parallel dislocation glide
surfaces in the half-space, representing the top and bottom
of the plate. The ESPM is intended to be a kinematic proxy
for slab-driven subduction [e.g., Forsyth and Uyeda, 1975;
Hager, 1984], where the shear strains between the bottom of
the downgoing plate and the surrounding mantle are ap-
proximated by the bottom dislocation glide surface. So, the
ESPM retains the BSM’s mathematical simplicity, while
providing more intuition regarding the plate bending pro-
cess. Because bending is explicitly included in the ESPM,
the fraction of flexural stresses released continuously over
the seismic cycle, fs, as well as plate thickness, H, are two
additional parameters in this model. Our goals here are (1) to
understand the contribution of flexure to such short-term
surface deformation, (2) to quantify the criteria under which
flexural contribution to surface deformation can be ignored,
as originally postulated by Savage [1983] for the BSM; and
(3) to obviate the need for many of the ambiguities inherent in
the pBSM, the popular (mis-) interpretation of the BSM. We
will show that the ESPM may not fit currently available
geodetic data any better than the BSM, but its importance
lies in providing additional physical insight into the com-
plete elastic deformation field owing to plate flexure at the
trench, and why a fault interface perturbation model has
been so successful in approximating a more complicated
geodynamic process like plate subduction over the seismic
cycle timescale.
[5] The simplicity of EDMs allows parameters such as

the slip distribution on the subduction interface during
different phases of the seismic cycle to be easily estimated
from inversions of geodetic data. It is therefore not surpris-
ing that the BSM has been used to successfully fit geodetic
observations using realistic plate interface geometries [e.g.,
Zweck et al., 2002; Khazaradze and Klotz, 2003; Wang et
al., 2003; Suwa et al., 2006]. Clearly, as the quality of
geodetic data as well as our knowledge of the 3-D elastic
structure improves, EDMs can be used to constrain more
complicated models [e.g., Masterlark, 2003]. However, in
spite of their success in fitting geodetic observations, it is
important to remember that kinematic EDMs such as the
ones discussed here fit the geodetic data by assuming that
all of the observed deformation is due to current fault
motion, ignoring any bulk relaxation processes [e.g., Wang
and Hu, 2006; Wang, 2007]. Another disadvantage of
purely elastic models is that they cannot model topographic
evolution on timescales longer than a few seismic cycles
since they cannot accommodate monotonically increasing
displacements (over geologic time) while keeping the
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stresses bounded. To the extent that such elastic deforma-
tion may provide the driving stresses for building perma-
nent topography on the overriding plate, however, EDMs
could be useful in guiding our intuition for models with
inelastic rheologies. Using the ESPM, we demonstrate
below the potential for such net surface topographic
evolution owing to elastic flexure of the subducting plate
at the trench.

2. Elastic Subducting Plate Model

[6] If the negative buoyancy of subducting plates plays a
significant role in mantle convection (as suggested origi-
nally by Forsyth and Uyeda [1975] and explored, for
example, by Hager [1984]), then there must be shear
tractions and associated shear strain between the downgoing
slab (‘‘plate’’ or ‘‘lithosphere’’) and the surrounding mantle
(‘‘asthenosphere’’). We want to encapsulate the effect of
such plate-driven subduction on the deformation at the
surface of the overriding plate during the interseismic time
period. In order to reconcile the BSM view of subduction
along a single fault interface with that of subduction of a
finite thickness plate at the trench, we propose a more
physically intuitive and generalized kinematic model, the
elastic subducting plate model (ESPM, Figures 1 (right) and
2 (right)). The ESPM is constructed by the superposition of
solutions for two edge dislocation glide surfaces in an
elastic half-space, that delineate the subducting plate having
a uniform plate thickness that remains unchanged as it
subducts at the trench (Figure 1, right). The lower disloca-
tion glide surface is a kinematic proxy for the shear strains
related to plate buoyancy-driven subduction. In fact, such a
surface is the simplest way to explicitly account for Savage’s
[1983] assumption of asthenospheric motions compensating
for overriding plate deformation, especially for subduction
zones that may not be mature, and therefore affected by
plate flexure at the trench. By construction, the relative slip
across the upper and lower plate surfaces of the ESPM is
equal in magnitude, but opposite in sign. The principal
effect of the lower glide surface (i.e., surface along which
the lower edge dislocation moves) is to channel material in
the ‘‘oceanic plate’’ into the ‘‘mantle,’’ relative to a refer-
ence frame that is fixed with respect to both the suboceanic
mantle as well as the far field of the overriding plate
(Figure 2, right). In contrast, while the pBSM considers
steady state subduction of material down the trench via
block motion (Figure 2, bottom middle), usually ad hoc
arguments are used to ignore the vertical component of
block motion, resulting in no net subduction of material into
the mantle. The BSM does not explicitly model astheno-
spheric motions causing material subduction (Figures 1, left,
and 2, left).
[7] There are two significant assumptions implicit in the

construction of the ESPM. The first assumption is that the
lithosphere-asthenosphere boundary is sharp (rather than
diffuse) contrary to expectations from seismic, thermal,
and rheological data. This simplification of a sharp litho-
sphere-asthenosphere boundary may be justified here be-
cause over the short timescales being considered here
relative to mantle convection, surface deformation on the
overriding plate is relatively insensitive to whether there is a
gradient or step jump in velocities across the lower boundary,

as long as the same volume of material undergoes subduc-
tion. In addition to this kinematic role, the bottom disloca-
tion glide also serves to decouple the shallow depths of the
half-space (‘‘lithosphere’’) from mantle depths, so that there
are negligible elastic stresses in the region of the half-space
that would normally be considered to be viscous mantle.
Further, such a sharp lower lithospheric boundary is com-
monly assumed in the parameterization of the flexural
strength of oceanic lithosphere with an elastic plate thick-
ness, Te [Turcotte and Schubert, 2001], as well as in viscous
plate models for analyzing long-term flexural stresses and
dissipation in the subducting slab [Buffett, 2006]. Thus, the
plate thickness defined in the ESPM could also be viewed as
a way to parameterize the fraction of volumetric flexural
stresses that may persist in the subducting lithosphere over
the duration of a seismic cycle.
[8] The second assumption is that over a single seismic

cycle, the underlying ‘‘mantle’’ in the ESPM does not
undergo significant motion relative to the far-field boundary
of the overriding plate. The BSM as motivated by Savage
[1983] assumes such motion as being part of the ‘‘complex
asthenospheric motions’’ not included in that model. In
contrast, by including block subsidence of the footwall (or
block uplift of the hanging wall), the pBSM predicts net
relative vertical motion between the entire ‘‘oceanic’’ block
(which includes the downgoing plate as well as the mantle)
and the ‘‘continental’’ block (Figure 2, bottom middle),
which is unrealistic. However, if this net relative uplift were
eliminated by an ad hoc correction to only the vertical
velocity field of the overriding plate, then the pBSM would
predict only net horizontal convergence between the foot-
wall and the hanging wall, but with a velocity equal to only
the horizontal component of block motion. However, since
the pBSM assumes no net deformation in the overriding
plate over the seismic cycle, ignoring this vertical compo-
nent removes the only ‘‘sink’’ for converging material,
thus leading to a physically irreconcilable model that
violates mass balance. In contrast, the ESPM satisfies
continuity by allowing material to ‘‘subduct’’ over the long-
term, in addition to predicting the expected sense and mag-
nitude of relative plate motion. The ESPM can be viewed as
the elastic component of lithospheric response over the
seismic cycle timescale, and does not preclude the existence
of viscous stresses at mantle depths (in a viscoelastic sense).
In fact, one could add a (linear) viscous mantle convection
deformation field to the ESPM field below the subducting
plate (similar to the layered models mentioned in section 1),
in order to introduce a gradient in the deformation field at
the bottom boundary of that plate, as well as introduce
relative motion between the suboceanic mantle and the
overriding plate when integrated over several seismic cycles.
Superposing such a field is no different from the astheno-
spheric motions envisaged by Savage [1983] because while
such a field introduces long-term relative motion in the
mantle underlying both plates, it does not affect the short-
wavelength deformation field in the vicinity of the trench
(Figure 2, top left), thereby not changing the predictions of
the ESPM over the seismic cycle.
[9] Thus, the ESPM adds only two extra degrees of

freedom relative to the BSM, the plate thickness, H, and
the fraction of flexural stresses released continuously, fs,
while still retaining the BSM’s advantages (small number of

B03405 KANDA AND SIMONS: SUBDUCTING PLATE MODEL

5 of 19

B03405



parameters) for geodetic data inversion. The additional
complexity of the ESPM due to these extra parameters is
compensated by the elimination of ambiguities related to the
implementation of the pBSM. By separating the subduction
zone into distinct regions that undergo coseismic slip
(locked megathrust along the upper surface) and interseismic
slip (remainder of the plate surfaces), the ESPM unambigu-
ously accounts for (1) the expected horizontal convergence at
the plate rate between the subducting and overriding plates,
(2) a net zero steady state vertical offset between the
subducting and overriding plate (integrated over many
seismic cycles), and (3) deformation due to slip along
nonplanar megathrust interfaces. As we show in section 3,
the ESPM can also be thought of as a more general model
that reduces to the BSM under special conditions.
[10] EDMs similar to the ESPM have been adopted in

earlier papers on modeling interseismic surface deformation
in subduction zones. For instance, Sieh et al. [1999]
consider a tapered ‘‘bird beak’’-shaped subducting plate
whose thickness reduces to a point at its downdip end.
Such a tapered geometry violates mass conservation within
the subducting plate, given the purely elastic and homoge-
neous rheology assumed. Zhao and Takemoto [2000] propose
a dislocation model for the subduction zone using a super-
position of steady slip along a planar thrust fault downdip of
the locked zone, and reverse slip along two lower glide
surfaces representing the bottom of the subducting plate
before and after the trench. However, they assume that the
lower glide surfaces have interseismic velocities that are
twice that of the upper surface and that the subducting plate
thickness decreases with depth, both of which are again
inconsistent with the conservation of mass within the
subducting plate. In contrast, the simpler ESPM assumes a
constant, depth invariant plate thickness for the downgoing
plate, H, as well as identical slip velocity magnitudes along
both glide surfaces at all times.
[11] We use the 2-D elastic dislocation solutions for a

dip-slip fault embedded in an elastic half-space given by
Freund and Barnett [1976], as corrected by Rani and
Singh [1992] [see also Tomar and Dhiman, 2003; Cohen,
1999] for computing surface velocities. To verify our code,
we compared surface velocity predictions using the above
formulation with those predicted by Okada’s [1992] com-
pilation for identical plate geometries. We choose the origin
to be at the trench, the x axis to be positive ‘‘landward’’ of
the trench, and the z axis to be positive upward (so depths
within the half-space are negative). Dips are positive clock-
wise from the positive x axis. For the vertical surface
deformation field, uplift is considered positive, and for the
horizontal field, arcward motion is assumed positive.
Although we only consider the plane strain problem here,
the ESPM can be extended to 3-D problems with along-
strike geometry variations; however, in this case, flexure
associated with along-strike plate interface curvature (e.g.,
Japan trench between northern Honshu and Hokkaido, or
the Arica bend of the Peruvian/Chilean trench) may cause
additional elastic deformation in the overriding plate.

3. End-Member Models of the ESPM

[12] For the ESPM, subtracting the steady plate subduc-
tion solution (Figure 1, top right) from that for strain

accumulation during the interseismic (Figure 1, middle
right), we obtain a mathematically equivalent model for
the interseismic, the BSM (Figure 1, bottom right). Thus,
the ESPM provides an alternate but kinematically more
intuitive framework for deriving the BSM. Further, in the
limiting case of the ESPM with zero plate thickness (H = 0),
the edge dislocation representing the horizontal section of
the bottom surface of the plate vanishes. Also, slip along the
creeping sections of the top and bottom dipping surfaces
cancel each other, except along the locked megathrust zone,
where normal slip (or ‘‘back slip’’) ensues, irrespective of
fault geometry (Figure 3, bottom). Thus, back slip along the
locked megathrust can also be understood as the slip
prescribed along the bottom surface of a ‘‘thin’’ subducting
plate, and in this limit, the ESPM is identical to the BSM as
motivated by Figure 1 of Savage [1983] (Figure 1, left). In
this zero plate thickness limit, there is no net deformation
in the overriding plate over the seismic cycle, irrespective of
the plate interface geometry. In contrast, for the pBSM with
a nonplanar plate interface, since no lower plate boundary
is assumed, net deformation in the overriding plate is un-
avoidable owing to steady state slip along a curved interface
[e.g., Sato and Matsu’ura, 1988;Matsu’ura and Sato, 1989;
Sato and Matsu’ura, 1992, 1993; Fukahata and Matsu’ura,
2006]. Thus, when using the BSM (or the pBSM) to invert for
geodetic data in subduction zones, one is inherently assuming
negligible thickness for the subducting plate, or continuous
relaxation of stresses resulting from plate flexure. In this
limit, kinematic consistency requires not only that the two
glide surfaces (plate surfaces) in the ESPM have the same
magnitude of slip, but also identical geometries.
[13] Therefore, when applying the pBSM to subduction

zones where the downgoing slab is inferred to have a
nonplanar geometry, the locked megathrust interface, where
back slip is imposed, should be modeled with the same
geometry as that of the bottom surface of the downgoing
plate directly beneath it (Figure 3, bottom right). While
there are several examples of papers that use the actual
nonplanar interface geometry for the BSM [e.g., Zweck et al.,
2002; Khazaradze and Klotz, 2003;Wang et al., 2003; Suwa
et al., 2006], some confusion has been created by the use of a
planar extension of the deeper portion of a curved subduction
interface for modeling back slip [e.g., Simoes et al., 2004;
Chlieh et al., 2008]. Such a planar fault tangential to the
interface at the downdip end of the locked zone intersects the
free surface arcward of the trench (‘‘pseudotrench,’’ Figure 4
(top)). The surface velocity predictions in the far-field due to
slip on a curved fault and its tangent planar approximation
are nearly indistinguishable. But because of the artificial
arcward shift in the tangent approximation’s ‘‘trench,’’ its
predictions of surface deformation differ significantly from
those for the curved megathrust right above the locked
interface (Figure 4, middle and bottom). An additional
concern is the use of entirely different faults for coseismic
and interseismic displacements. Savage [1983] explicitly
states this notion of applying back slip to the megathrust
interface, irrespective of its shape. But as discussed earlier,
that model’s application by subsequent researchers, possibly
arising from the pBSM notion of block motion, have created
an apparent ambiguity in the implementation of the BSM to
nonplanar fault geometries.
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[14] In the limiting case of the ESPM with very large
plate thickness (H!1), the lower glide surface is at a large
depth below the upper plane, and for a fixed radius of
curvature (typically a few hundred km), the plate behaves
like a planar slab with a sharp kink at the trench (Figure 3,
left). So, the contribution of the bottom glide surface
reduces to a single dislocation at this kink that is deeply
embedded within the half-space. Consequently, the contri-
bution of the bottom glide surface has almost negligible
amplitude and a very broad wavelength: its contribution to
the total ESPM surface deformation field becomes negligi-
ble. The only contribution to the surface ESPM deformation
field in this ‘‘infinite thickness’’ limit comes from the buried
thrust fault downdip of the locked zone. Thus, in this limit
of ‘‘infinite’’ plate thickness (i.e., for very thick plates, as in
plate collision zones), the ESPM mathematically reduces to
the buried fault model (the BFM, Figure 3 (top)), which is
typically used for modeling interseismic surface deforma-
tion in continental collision zones [e.g., Vergne et al., 2001].
The ESPM can therefore be viewed as a more general model
for plate convergence zones, which reduces to previously

developed models for subduction (the BSM or pBSM) or
collision zones (the BFM) for limiting values of plate
thickness (zero and infinity, respectively).

4. Effect of Plate Flexure on the ESPM Surface
Deformation Field

[15] When the plate has nonnegligible thickness, H, the
ESPM and the BSM differ significantly close to the trench
due to strains induced by plate flexure. The differences in
the predictions of the ESPM and the BSM arise from having
the same magnitude of relative slip along both surfaces of the
downgoing plate, as it subducts at the trench. As a conse-
quence, material at any cross section of the downgoing plate
moves with a uniform velocity equal to the plate conver-
gence rate, resulting in permanent shearing of the subduct-
ing material passing through the trench. Henceforth, we use
‘‘flexural strain’’ to refer to this shear-dominated strain
within the elastic subducting plate as it passes through the
trench. The associated ‘‘flexural stresses’’ cause net defor-
mation in the overriding plate at the end of each seismic

Figure 3. Geometric comparison of the ESPM with (left) planar and (right) curved geometry.
(top) ESPM in the limit of a very thick plate (the BFM); (bottom) ESPM in the limiting case of negligible
plate thickness (the BSM). Note that the ‘‘dip’’ of the curved fault is defined at a point where the plate
straightens out. The dip of the curved fault at the trench is assumed to be zero. Other notation and
assumptions are same as Figure 1.
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cycle. So, unless these flexural stresses (1) have negligible
magnitudes (as when H = 0) or (2) are continuously released
in their entirety in the shallow portions of subduction zones,
the surface velocity predictions of the ESPM differ signif-
icantly from those of the BSM above the locked megathrust
interface (Figure 5). One might argue that this region of
discrepancy in these models’ predictions lies over the fore-
arc wedge, and therefore cannot be modeled by a purely
elastic model like the ESPM. However, any excess elastic
deformation predicted for this zone by the ESPM (compared
to that of the BSM) can provide insight into the localization
of incremental inelastic strain accumulation over multiple

seismic cycles. Also, to the extent that such net seismic
cycle deformation can contribute to the long-term evolution
of surface topography in the real Earth, we expect inelastic
processes (such as erosion, accretion and/or sedimentation)
to counter any ‘‘runaway’’ topographic evolution resulting
from the discrepancy in these models’ predictions. In
addition, the ESPM can still be used to infer the short-term
elastic component of wedge deformation over the duration
of a single seismic cycle, especially as ocean bottom
geodetic data become available in the near future.
[16] To understand the strain accumulation arising from

our assumption of uniform velocity for the two ESPM glide

Figure 4. Appropriate application of the BSM to curved faults. Back slip must be applied to the curved
interface geometry appropriate for a subduction zone, instead of to its tangent at the downdip end of the
locked zone. The curved fault (solid gray line) resembles the subduction thrust interface geometry below
the island of Nias, offshore of Sumatra (qtop = 3�, qbot = 27� [Hsu et al., 2006]). The tangent approximation
to the curved fault [Chlieh et al., 2004; Simoes et al., 2004; Chlieh et al., 2008] is represented by the
dashed black line. (top) Faults in cross-sectional view; x*( = x/Dlock) is the dimensionless distance
perpendicular to the trench; z*( = z/Dlock) is the dimensionless depth. The origin of the dimensionless
x*-z* system is at the location of the trench axis. (middle) Vertical surface velocity profile, Vz*, and
(bottom) horizontal surface velocity profile, Vx*, are scaled by the uniform plate convergence velocity, Vp.
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surfaces, we need only consider the steady state motion of
the subducting plate (i.e., without any locked patch). Such
steady state motion results in a uniform cross-sectional
velocity for material being transported within the subduct-
ing plate, and is identical to flexural shear folding, where
individual layers within the plate do not undergo changes in
either their thickness or length (similar to folding a deck of
cards [see Suppe, 1985; Twiss and Moores, 1992]). Material
moving through each layer undergoes only a change in
direction as it bends through the trench during the inter-
seismic time period (Figure 2, bottom right). This kinematic,
volume-conserving assumption leads to runaway deforma-
tion near the leading edge of the overriding plate, unless

flexural stresses are released between successive megathrust
ruptures.
[17] Within the framework of dislocations embedded in

an elastic half-space, there are two equivalent approaches to
simulating flexural stress release as the plate subducts at the
trench:
[18] 1. Applying an additional uniform velocity gradient

within the plate (whose magnitude varies continuously
along its length depending on the local curvature) that
extends material near the top surface of the plate, and
compresses material near the bottom surface as the plate
subducts at the trench. This gradient is therefore zero for the
planar sections of the plate before the trench and after
straightening out in the upper mantle.

Figure 5. Comparison of deformation for the BSM and the ESPM with plates of different thickness, H,
for a realistic curved fault geometry. The thick gray solid curves represent the BSM, and the extent of the
locked zone is shaded in yellow. The blue solid curve coinciding with the BSM surface velocities is the
ESPM with zero plate thickness. The thick light blue curve is the surface velocity field due to the buried
thrust downdip of the locked zone (i.e., the BFM). The thin dashed red curve coinciding with the BFM
surface velocity field is the ESPM having an ‘‘infinite’’ plate thickness. In all cases, the imposed uniform
slip rate is in the normal sense for the BSM (back slip) and reverse (thrust) sense for the ESPM.
Organization and nondimensionalization of the plot axes are same as Figure 4.
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[19] 2. Allowing slip at the axial hinges across which the
plate successively bends as it subducts, so as to rotate planes
that were perpendicular to the top and bottom surface of
plate before subduction remain so after subduction.
[20] We first consider releasing the flexural stresses in the

ESPM by superimposing a velocity gradient within the
plate, which is equivalent to assuming that the subducting
slab behaves as a thin viscous or elastic plate in flexure
[Turcotte and Schubert, 2001]. This approach is a bit
arbitrary when applied to a planar interface geometry as
its curvature is infinite at the trench and zero otherwise. So,
we illustrate this approach using a curved plate geometry.
We want plane sections that are normal to the top and
bottom surface of the incoming plate remain so as it bends
through the trench and straightens out in the upper mantle.
We assume that the material at the centerline (or the neutral
axis) of the incoming plate passes through the trench
without a change in speed, Vp. Material above the centerline
accelerates as it passes through the trench relative to Vp, in
proportion to its ‘‘radial’’ distance from this centerline:

V ¼ Vp

Rp

r; ð1Þ

where Rp is the radius of curvature of the centerline as it
passes through the bend and r is the distance normal to the
centerline profile. This would ensure that the rectangular
patch in Figure 6a remains rectangular as it passes through
the trench. So, the speeds for the top and bottom surfaces of
the plate would be

Vtop ¼
Vp

Rp

Rtop ¼
Vp

Rp

Rp þ
H

2

� �
¼ Vp 1þ HCp

2

� �
¼ Vp 1þ dV

Vp

� �

Vbot ¼
Vp

Rp

Rbot ¼
Vp

Rp

Rp �
H

2

� �
¼ Vp 1� HCp

2

� �
¼ Vp 1� dV

Vp

� �
;

ð2Þ

where Rtop and Rbot refer to the local radii of curvature for
the top and bottom surfaces of the plate, H is the plate
thickness, and Cp is the plate curvature. Cp is equal to zero
for the straight sections in the ESPM. So, the velocity
corrections apply only to the curved section of the
subducting plate. For radius of curvature, Cp, equal to
250 km (which is roughly the value used for all the curved
profiles in this paper), and an elastic plate thickness, H, of
50 km for the subducting lithosphere, the velocity
correction, (dV/Vp), equals 10%. We verified that the
surface velocity field predicted by the ESPM with these
velocity corrections is identical to that predicted by the
BSM. Therefore, as long as the plate geometry has finite
curvature, adding velocity corrections to the finite thickness
ESPM (H > 0) generates a model with no net deformation of
the overriding plate (the BSM). Since the resulting surface
deformation field due to this viscoelastic approximation
looks identical to that for the kinematically equivalent
plastic approximation (discussed next), we do not show
separate plots for this approach here.
[21] We next consider releasing flexural stresses via slip

along planar axial hinges of folding as the plate subducts
through the trench (the ‘‘plastic’’ formulation of flexure),
which is equivalent to adding localized plastic deformation

within the subducting plate. In order to conserve the
thickness of the plate as it bends at the trench, the hinge
must bisect the angle between the horizontal and bent
sections of a planar subduction interface, or between adja-
cent sections of a nonplanar interface, whose dip changes
with increasing depth (Figures 6a and 6b). Although the
axial hinge plane does not experience relative displacement
across itself, it can be shown that the deformation gradient
tensor associated with this plane is identical to that of a fault
experiencing relative displacement across that plane, espe-
cially at distances larger than the radius of curvature of the
fold hinge [Souter and Hager, 1997]. A curved fault can be
thought of as bending along a set of such axial hinge planes,
whose number depends on the discretization of the nonpla-
nar fault profile (Figure 6b). As the discretization of the
fault profile becomes finer, correspondingly more hinges are
required to accurately model flexural strains. Axial hinges
help relax the accumulated flexural stresses by allowing the
transport of material from the vicinity of the trench down
the subducting plate in a kinematically consistent way
(Figure 6c), resulting in a thrust sense of slip across each
axial hinge with the magnitude,

Dv ¼ 2Vp sin
Dq
2

� �
; ð3Þ

where Dv is the relative slip required to exactly compensate
for plate flexural strains at the hinge, and Dq is the change
in dip across that hinge. Again, in the limiting case of a
curved fault, this reduces to

Dv � VpDq: ð4Þ

Figure 6a geometrically illustrates this flexural strain for a
planar fault interface characterized by a single discrete bend
in the subduction plate. Since the two glide surfaces have
the same slip rate, the gray rectangular volume in Figure 6a
is sheared into a parallelogram after completely passing
through the trench. The accumulated shear strain due to
bending (represented by the shaded zone in Figure 6a) is
proportional to the difference in path lengths for the top and
bottom edges of the rectangle at the upper and lower
dislocations (Figure 6a):

exz ¼
2H tan Dq

2

� �
H

¼ 2 tan
Dq
2

� �
; ð5Þ

where exz is the shear strain and Dq is the change in dip
angle at the trench. Similarly, a curved geometry can be
thought of as a series of infinitesimally small bends in the
plate (Figure 6b). In this case, the incremental strain due to
each such bend can be calculated from equation (5), in the
limit of infinitesimally small Dq:

Dexz � 2
Dq
2

� �
¼ Dq; ð6Þ

which is identical to pure shear. In this case, the local rate of
strain accumulation along the curved plate is given by

dexz
dt
¼ Vp

Dexz
Ds

����
Ds!0

¼ Vp

Dq
Ds

����
Ds!0

¼ VpCp; ð7Þ
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where Vp is the long-term plate convergence velocity, t is
time, s is the arc length along the curved profile, and Cp is
the local curvature of the profile, as in equation (2). So, the
strain rate in the slab is proportional to the convergence

velocity and curvature in this purely kinematic model.
Because this derivation was based on fixing the geometry of
the plate, the strain rate obtained above is equivalent to that
derived for viscous plates by Buffett [2006], or bending of

Figure 6. Kinematics of plate bending. (a) Bending of the plate at the trench for the ESPM with linear
fault interface geometry; Motion of subducting material through the trench results in shearing as indicated
by the shaded area. Axial hinges of folding can be kinematically represented by dislocations, across
which incoming material in the plate experiences a change in direction, but not in magnitude. (b) Bending
of the plate at the trench for the ESPM with a nonplanar (or curved) fault interface geometry. The curved
interface is represented by a number of linear segments having different slopes, and the number of hinges
corresponds to the number of planar segments representing the discretization. (c) Velocity vector diagram
showing required slip rate on an axial hinge to kinematically restore strains due to bending at the hinge.
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thin plates by Turcotte and Schubert [2001], except for a
factor of distance from neutral axis (since we have assumed
uniform velocity here).
[22] Henceforth, we use ‘‘flexural field’’ to denote the

deformation field resulting from either the velocity correc-
tions or the axial hinges for a steadily slipping plate with no
locked zone on the subduction thrust interface (Figures 7a
and 8a). Subtracting the surface velocity field due to either
of the flexural fields from that for the ESPM having a
locked zone results in the BSM surface velocity field
(Figures 7b and 8b). It is important to note that the plate
interface geometry has a very strong effect on the shapes of
the surface velocity profiles of the flexural field. For the
planar interface, both the horizontal and vertical surface
velocity profiles indicate that the frontal wedge of the
overriding plate, immediately adjacent to the trench, under-
goes net compression (Figure 7a, middle and bottom). The
horizontal surface velocity profile for the curved interface is
‘‘ramp-like’’ but shows more subdued strain rates (flatter
slope) near the trench compared to the planar case (Figure 8a,
bottom). In contrast, the vertical surface velocity profile for
the curved interface predicts subsidence adjacent to the
trench, strains having the opposite sense to those for the

planar case (Figure 8a, middle), and attains a maximum value
directly above the straightening of the plate interface at depth
(compare Figures 8a (top) and 8a (middle)).
[23] Thus, irrespective of the geometry of the downgoing

plate, adding either flexural deformation field to that for the
finite thickness ESPM (H > 0, and having a locked zone)
yields predictions identical to that for the ESPM with H = 0
(i.e., the BSM). This equivalence between the ESPM having
a finite plate thickness (H 6¼ 0) and the BSM implies that if
the ‘‘volumetric’’ flexural stresses are released continuously
and aseismically in the shallow parts of the subduction zone
during the interseismic period, then the surface deformation
due to both BSM and the ESPM are identical for any plate
thickness and shape (curvature). If these stresses are released
in the deeper parts of the subduction zone (depth � H),
episodically or continuously, we expect net surface topogra-
phy to persist after each cycle. But in the real Earth, we would
expect such topographic buildup to be modulated by gravity
and limited by processes like accretion, sedimentation, and/or
erosion in the frontal wedge of the overriding plate. In this
equilibrium scenario, the support for near-trench flexural
stresses would eventually generate surface topography that
is stable after each seismic cycle. So, even when flexural

Figure 7. The surface deformation field for the ESPM for a planar plate geometry: (a) the ESPM with
no locked zone is equivalent the long-term, steady state plate motion (solid black line). The surface
velocity field due to the axial hinge (thin dashed gray line) cancels the effect of plate flexure at the trench
(thin solid black line), resulting in net zero long-term strain accumulation over the seismic cycle (thick
solid black line). (b) Effect of a single axial hinge on the ESPM with a locked megathrust fault. Again,
note that the ESPM predicts the correct sense of motion for the oceanic plate. The sum of the ESPM (thin
solid black line) and axial hinge (thick dotted gray line) velocity fields, shown as the thick dashed black
line, exactly equals that for the equivalent BSM (thick solid gray line). See Figure 4 caption for full
description.
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stresses are released at depths (>100 km), the interseismic
velocity fields from the ESPM and the BSM should be nearly
identical. In all the above cases, it is appropriate to use the
BSM as a simple mathematical approximation to the ESPM.
However, within the context of an elastic Earth, the ESPM is
still the kinematically more realistic model to interpret the
pBSM. The only scenario where the ESPM and the BSM (or
pBSM) surface velocity predictions differ would be when
part or all of the flexural stresses not released continuously in
the shallow parts of the subduction zone (e.g., normal
faulting in the forebulge of the subducting plate), and in this
case, it is more appropriate to adopt the ESPM.

5. Comparison of the ESPM and the BSM
Surface Displacements

[24] As noted in section 4, Flexural stresses near the
trench cause the ESPM field to be more compressive than
the BSM stress field, resulting in larger surface uplift rates
above the downdip end of the locked megathrust interface.
This compression is enhanced with either increasing plate

thickness or plate curvature. For typical H/Dlock ratios and
curvatures found in most subduction zones, a measurable
difference exists between the BSM and the ESPM surface
velocity fields (>5 mm/yr, for a typical subducting plate
velocity of 5 cm/yr) up to a distance of approximately five
to six times the locking depth (Figure 5). Intuitively, we
expect that in the real Earth, the tip of the frontal wedge
adjacent to the trench may not deform in a purely elastic
manner. But even in this region, deformation predicted by
the ESPM can be considered as the purely elastic component
of the total deformation field within the overriding plate
during a seismic cycle, and as the driving force for inelastic
deformation, and the discrepancy between the ESPM and the
BSM (or the pBSM) at a horizontal distance of one inter-
seismic locking depth from the trench can still be as large as
�100% in the verticals and �15% in the horizontals.
[25] As plate thickness increases, this zone of significant

difference between these two models broadens for both
horizontals and verticals. The location of the zero vertical
velocity (commonly referred to as the ‘‘hinge line’’) for a
thick plate shifts trenchward by as much as 20% from its

Figure 8. Surface deformation field for the ESPM for curved plate geometry: (a) the ESPM with no
locked zone is equivalent the long-term, steady state plate motion (solid black line). The axial hinges or
velocity gradient corrections are introduced at positions corresponding to the discretization resolution of
the curved fault. The surface velocity field due to axial hinges or a velocity gradient (thin dashed gray
line) cancels the effect of plate flexure at the trench (thin solid black line), resulting in net zero long-term
strain accumulation over the seismic cycle (thick solid black line). Note that the peak uplift due to the
bending of a curved plate is shifted arcward in comparison to the peak for the planar geometry (Figure 7).
(b) Effect of the plate flexural field (axial hinges or velocity gradient corrections) on the ESPM with a
locked megathrust fault. The sum of the ESPM (thin solid black line) and axial hinge (thick dotted gray
line) velocity fields, shown as the thick dashed black line, exactly equals that for the equivalent BSM
(thick solid gray line). Plots and plot axes are as described in Figure 4.

B03405 KANDA AND SIMONS: SUBDUCTING PLATE MODEL

13 of 19

B03405



location for the BSM (Figure 5, middle). However, the
locations of the peak in vertical velocity profile or the break
in slope of the horizontal velocity profile show only weak
dependence on plate thickness. Increasing plate thickness
results in a nearly uniform increase in the horizontal strain
rate profile, resulting in a long-wavelength upward tilt of the
horizontal surface velocity field relative to the far-field
boundary of the overriding plate (Figure 5, middle and
bottom). Thus, a larger plate thickness enhances the non-
uniform differences between the vertical surface velocity
profiles of the ESPM and the BSM, in contrast to causing
only a subtle change in slope between their horizontal
surface velocity profiles. Therefore, vertical surface veloc-
ities are the key to differentiating between the ESPM and
the BSM, i.e., for estimating the minimum elastic plate
thickness for a given subduction interface geometry. Owing
to the sensitivity of hinge line location to plate thickness,
vertical velocities are clearly important in constraining the
arcward extent of the locked megathrust.
[26] Hence, to characterize both the degree of coupling

and minimum elastic plate thickness, it is best to use both
horizontal and vertical velocity data for geodetic inversions.
Perhaps most importantly, the uncertainties in the measured
vertical velocities on land must be small (<1 cm/yr), which
is possible with current processing methods for regions
having good geodetic data coverage over long periods of
time (e.g., >13 years of continuous GPS coverage in Japan),
and/or ocean bottom geodetic surveys are required. Of
course, we must also be confident that these vertical
velocities are only due to elastic processes, and not due to
inelastic effects like subduction erosion [Heki, 2004].
Therefore, given the current uncertainty of geodetic data
and their location with respect to the trench, unless a thick
lithosphere or a shallow locking depth can be inferred from
other kinds of data (e.g., seismicity, gravity signature
associated with plate flexure, seismic reflection, etc.), the
BSM is as good a model as the ESPM. But the ESPM still
provides not only a generalized framework for deriving,
implementing, and interpreting the BSM, but also a funda-
mental understanding of why the BSM (or pBSM) has been
so successful in interpreting interseismic geodetic data in
subduction zones. This generality is an important feature of
the ESPM, regardless of whether geodetic data can, at
present, distinguish the predictions of this model from that
of either the BSM or the BFM.

6. Elastic Stresses and Strains in the Half-Space

[27] Subduction is ultimately governed by the negative
buoyancy of the downgoing slab [e.g., Elsasser, 1971;
Forsyth and Uyeda, 1975]. The kinematic assumptions used
here assume that the dynamics of subduction do not change
significantly during timescales relevant to seismic cycles
(<104 years), and therefore the convergence velocity between
the subducting and overriding plates, and the geometry of the
subduction interface are relatively constant over this time
period.
[28] Viewing the BSM (or pBSM) as an end-member

model of the ESPM clarifies some of the concerns of
Douglass and Buffett [1995, 1996] regarding the former
model. By definition, all glide surfaces in the ESPM creep
aseismically, at a steady rate, during the interseismic period,

continuously loading the locked megathrust as well as
surrounding regions in the overriding plate. The burgers
vector, which is the displacement of the edge dislocation
representing the bottom of the locked fault over one seismic
cycle, accumulates steadily over the glide surfaces bounding
the plate until a megathrust event. Therefore, the ESPM
provides a natural explanation for the slip rate dependence
of stress along the locked zone even though there is no
relative slip across that portion of the interface. It must be
noted that both the BSM and the pBSM also consider the
locked zone to be at rest during the entire interseismic
period because of the superposition of steady creep and
back slip on the fault. In fact, as noted earlier, in the ESPM
view of the BSM, ‘‘back slip’’ is actually the creep along the
bottom surface of the plate, as well as equal to the creep
directly downdip of the locked zone.
[29] Another concern of Douglass and Buffett [1995,

1996] was that given the boundaries of the half-space are
at infinite distance in EDMs, the tractions along the bottom
of the overriding plate (‘‘hanging wall’’) are equal but
opposite in sense, on either side of the dislocation tip
(i.e., the downdip end of the locked zone). Within the
kinematic context of EDMs, we can make a rough estimate
of the strain (and stress) perturbations introduced by BSM
during a seismic cycle. Typical plate convergence rates are
of the order of cm/yr with the maximum convergence
having a value of the order of 10 cm/yr (10�1 m/yr). This
long-term slip velocity divided by the typical width of the
locked patch of the order of 100 km (105 m) should give us
the an estimate of the magnitude of strains and stresses in
the elastic half-space owing to the presence of the edge
dislocation representing the locked patch. The above calcu-
lations yields a typical strain rate of several mstrain/yr,
which, when multiplied by a typical value of shear modulus
for crustal rocks (tens of GPa) gives stress rates of the order
of 10 kPa/yr. Thus, over a typical megathrust earthquake
recurrence interval of 300 years, the accumulated stress on
the locked patch reaches 3 MPa, equivalent to the average
stress drop in interplate earthquakes [Kanamori andAnderson,
1975]. In addition to the BSM strain field, the ESPM
introduces additional strains associated with material trans-
port down the subducting plate. Observations and theoretical
estimates constrain the radius of curvature for subducting
plates to�200 km [Conrad and Hager, 1999, and references
therein]. From equation (3), we can calculate the additional
flexural strain rate introduced by the ESPM to be of the order
of 0.1 mstrain/yr (1/10th of the BSM’s interseismic strain
accumulation rate), which causes a mean surface velocity
perturbation of roughly 10% of the BSM’s field (Figures 5, 7,
and 8). In contrast, both plate flexure theory [Turcotte and
Schubert, 2001] and thin plate finite strain theory [e.g., Seth,
1935] predict plate bending stresses that are of the order of
several 100MPa to 1 GPa over mantle convection timescales.
Therefore, the ESPM (as well as the BSM) introduces stress
perturbations during the seismic cycle that are much smaller
than the long-term stress field associated with plate tectonics.
Thus, as Savage [1996] argued for the BSM, when this plate
tectonic stress field is added back to that for the BSM, the
correct sense of absolute stress is restored all along the bottom
of the overriding plate.
[30] The flexural fields discussed in sections 4 and 5 help

counter the bending strain perturbation from the ESPM,
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either partially or in full. The key to estimating the ESPM
plate thickness, H, then is identifying what fraction of the
flexural stresses associated with the above perturbation is
released episodically in the shallow part of the subduction
zone. If we can estimate a plate thickness from interseismic
geodetic data ignoring this fraction, that is, assume that all
of the flexural stresses are only released episodically in the
shallow portion of the subduction zone, then we will end up
with the minimum effective plate thickness required by such
data. Otherwise, this fraction can also be estimated as an
additional ESPM parameter during inversion. Thus, depend-
ing on whether other kinds of data warrant the determina-
tion of a fractional flexural stress release (fs), the ESPM can
be used for inverting interseismic geodetic data with only
one (H), or two (H, and fs) additional parameters compared
to the BSM

7. Discussion

[31] Our capacity to resolve between the BSM and the
ESPM, and therefore, the characteristics of plate flexural
stress relaxation, depends on whether there are geodetic
observations close to the trench (xGPS < xlock, see Figure 1).
Typically, GPS stations are on the overriding plate at
distances much larger than xlock from the trench, where
both the ESPM and the BSM predict nearly identical
velocities. However, if highly accurate vertical geodetic
data are available on the surface of the overriding plate, at
distances less than xlock from the trench, and if we are
confident that this data reflects elastic processes, then we
would be able to discriminate between the surface defor-
mation fields predicted by these two models (1) if subduct-
ing plate thickness in the ESPM is large, (2) if the plate
geometry has a large curvature near the trench, and (3) if the
volumetric strain associated with plate bending is released
episodically in the shallow portions of the subduction zone
(<100 km depth). Even in this case, there will be a tradeoff
between the actual plate thickness and the fraction of
flexural stresses released episodically in the shallow portion
of the subduction zone. Therefore, we will only be able to
estimate a minimum plate thickness from even a very
accurate and dense network of geodetic observation sta-
tions. However, if the flexural strain is released continu-
ously in the shallow parts of the subduction zone, or
released at larger than �100 km depth, in which case the
release occurs too deep to have an effect on the surface
deformation of the overriding plate, then the surface veloc-
ity fields predicted by the ESPM and the BSM are nearly
identical to each other and the latter may be a better model
to use because it has two fewer parameters to estimate.
[32] Potential areas where the subduction zone geometry

is favorable for testing the ESPM include: Nankai Trough
underneath Kii Peninsula [e.g.,Hacker et al., 2003, Figure 3],
Costa Rica Trench, south of the Nicoya peninsula [e.g.,
Hacker et al., 2003, Figure 4], Peru-Chile Trench from
Equador through Peru [e.g., Gutscher et al., 2000, Figures 3,
5, and 10], northern Chile [e.g., ANCORP Working Group,
2003, Figure 7], and perhaps, Sumatra [e.g., Chlieh et al.,
2008].
[33] Based on the typical radius of curvature of most

subducting slabs, the current distribution of geodetic obser-
vations as well as their accuracy, and the surface velocity

field predictions above, the ESPM is a relevant model for
subduction zones wherever H/Dlock � 2; that is, either the
locked zone is constrained to be shallow (for instance, from
thermal modeling [Oleskevich et al., 1999]) or the down-
going slab can be inferred to be thick (say > 50 km) based
on seafloor age at the trench [e.g., Fowler, 1990; Turcotte and
Schubert, 2001]. In contrast, the ESPM with H/Dlock � 1 is
indistinguishable from the BSM, even though the latter may
overpredict the extent of the locked zone by roughly 10 km
(leading to similar discrepancies in xlock); in this case, the
BSM may be a better model to use because of its simplicity.
These requirements immediately exclude the following:
Nankai Trough (because of the small curvature of the
Philippine Sea plate, with shallow dip <15� [Park et al.,
2002]), Tohoku, Japan Trench (inferred to have very deep
locking depth [Suwa et al., 2006]); and Sumatra (because
the inferred locking depth is not shallow, 30–55 km [see
Subarya et al., 2006]). The most promising of the above
subduction zones for future investigations to discriminate
the ESPM from the BSM (or the pBSM) are: Nicoya
peninsula, Costa Rica (shallow seismogenic zone and strong
slab curvature [DeShon et al., 2006]); and northern Chile in
the vicinity of the Mejillones peninsula (possibly shallow
locking depth, and strong plate curvature [ANCORPWorking
Group, 2003; Brudzinski and Chen, 2005]). Of course if
ocean bottom geodetic stations are successfully installed in
the future [see, e.g., Gagnon et al., 2005], then many of the
above subduction zones might be more amenable to appli-
cation of the ESPM.
[34] To the extent that net deformation remaining after a

seismic cycle may contribute incrementally to the long-term
surface topography of the overriding plate, Figure 8a
(middle) points to another important consequence of elastic
plate flexure. For a realistic curved subduction megathrust
interface, the peak in the vertical surface velocity field due
to plate flexure has a magnitude of <5% of the long-term
plate convergence rate (for plate thickness of <100 km), and
occurs at distances of approximately 75–150 km arcward of
the trench. The location of the peak uplift rate is indepen-
dent of the plate thickness, but depends strongly on plate
curvature. The purely elastic ESPM cannot accumulate such
long-term inelastic strain, but it can still provide a measure
of where such deformation could occur in the overriding
plate over several seismic cycles. In the real Earth, we
expect such runaway elastic deformation to be continuously
modulated by gravity, inelasticity, accretion, sedimentation,
and erosion, resulting in near-equilibrium surface topogra-
phy. So, if even a small fraction of this peak surface uplift
rate arising from elastic flexure promotes inelastic defor-
mation in the real Earth, then stable islands or coastal uplift
[e.g., Klotz et al., 2006] could occur at such distances over
the long term. We illustrate this flexural effect for the
Sumatran subduction zone (Figure 9, with interface geom-
etry as described by Hsu et al. [2006]). The location of the
peak uplift rate is at a distance of �100 km, irrespective of
plate thickness (Figure 9, bottom) and corresponds roughly
to the location of the islands in the fore arc, as discerned by
the along-strike-averaged, trench perpendicular bathymetric
profile (Figure 9, middle).
[35] Thus, plate bending could be a plausible driving

mechanism for fore-arc uplift phenomena, such as the
presence of fore-arc islands or coastal uplift, in young,
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Figure 9. Comparison of predicted surface velocity profiles from the elastic plate bending flexural field
(Figure 9, bottom, for plate thicknesses of 25 (dashed gray), 50 (gray), and 100 km (black)), with that of
the long-term along-strike averaged trench-perpendicular topographic profile (Figure 9, middle, with
error bars in blue) for the Sumatran subduction zone (Figure 9, top, and inset map). Note that the location
of the peak uplift rate is independent of plate thickness, Hslab (Figure 9, bottom). The trench profile in the
map is from Bird [2003], and the rectangle indicates the zone of along-strike averaging of the plate
geometry (Figure 9, top) as well as bathymetry (Figure 9, middle). The geometry of the mean plate
interface profile (Figure 9, top, only Hslab = 100 km is shown) is similar to that assumed by Hsu et al.
[2006] and attains a dip of 30� at a depth of �27 km below the islands. Note the correspondence in the
location of the peak values in Figures 9 (middle) and 9 (bottom). See text for details.
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evolving subduction zones, even if only a fraction of the
flexural strain after each seismic cycle is inelastic. While
such fore-arc uplift phenomena have been predicted by
layered elastic over viscoelastic models [e.g., Sato and
Matsu’ura, 1988; Matsu’ura and Sato, 1989; Sato and
Matsu’ura, 1992, 1993; Fukahata and Matsu’ura, 2006],
they include many more parameters related to erosion,
accretion, and sedimentation, with much larger uncertain-
ties. In addition, the long-term deformation in these models
was shown by the above authors to be entirely attributable
to only the portion of the fault interface embedded in the
upper elastic layer (of thickness H), which results in a
surface deformation field that is qualitatively similar to that
of the steady state component of the ESPM with plate
thickness, H. The advantage of the ESPM is that only a
single parameter (fs) is required to determine the potential
locations of permanent deformation, and therefore much
more conducive to geodetic inversions.

8. Conclusions

[36] The ESPM can be thought of as a kinematic proxy
for slab-buoyancy-driven subduction. The derivation of the
ESPM provides a kinematically consistent and physically
more intuitive rationale for why the BSM works so well for
interpreting current interseismic geodetic data, especially
for young, evolving subduction zones. The BSM can be
viewed as an end-member model of the ESPM, in the
limiting case of zero plate thickness. The BSM is also an
end-member model of the ESPM having a finite plate
thickness, if all of the stresses associated with these plate
flexural strains are either released continuously in the
shallow portion of the subduction zone, or released deeper
in the subduction zone (>100 km depth). So, the current
practice of fitting available interseismic geodetic data using
the BSM, is in effect using the ESPM, but assuming either
(1) a negligible elastic plate thickness or (2) that all flexural
stresses are released continuously during bending or at
depth. Only in the case where these plate flexural stresses
are not released continuously in the shallow parts of the
subduction zone, can the deformation field of the ESPM be
distinguished from that of the BSM. In this case, the
differences between the surface velocity fields predicted
by the two models is measurable within a few locking
depths of the trench, and our ability to discriminate between
them is limited by lack of geodetic observations above the
locked patch in most subduction zones.
[37] Unlike the pBSM, the ESPM, by definition, yields

the correct sense and magnitude of horizontal velocities
on the surface of the downgoing plate before it subducts
into the trench, as well as zero net steady state block uplift
of the overriding plate, primarily because volume conser-
vation is integral to its formulation. Therefore, unlike the
pBSM, the ESPM does not require ad hoc steady state
velocity corrections. The ESPM eliminates ambiguities
associated with the application of the pBSM to nonplanar
geometries by providing a kinematically consistent frame-
work in which to do so. For plates with curved geometry,
the equivalent BSM should have back slip applied along the
corresponding curved subduction interface (Figure 3, and as
explicitly stated by Savage [1983]), and not along the
tangent plane to this curved interface at depth.

[38] Characterizing the ESPM requires the estimation of
at most two additional parameters (plate thickness and
fraction of flexural stresses released), which can potentially
be inverted for in subduction zones that have an H/Dlock

ratio equal to 2 or greater. If we assume all flexural stresses
are only released episodically in the shallow part of the
subduction zone, then this elastic thickness is a minimum
plate thickness over the seismic cycle timescale, as seen by
geodetic data. If the BSM is used for the inversion instead
of the ESPM, it would predict a wider locked zone com-
pared to the ESPM, assuming that the fault geometry is well
constrained. In order to discriminate between the ESPM and
the BSM, we must use both the horizontal and vertical
surface velocity fields. As the data quality, duration, and
coverage improve in the future (especially station density
near the trench, say with the deployment of GPS stations on
islands or peninsulas close to the trench or on the ocean
bottom) inversion for the ESPM parameters can provide an
independent estimate for a minimum elastic thickness of the
subducting plate, and perhaps even its along-strike variation.

Notation

exz shear strain.
dexz/dt shear strain rate.
q,qdip planar fault/plate interface dip.
qbot dip at the bottom of the locked zone

for a curved plate interface.
Dq change in interface dip from one curved

segment to the next.
Dlock, dlock depth of locking along the megathrust

interface.
Cp local curvature of the centerline of the plate.
fs fraction of flexural stresses released

episodically at shallow depths.
H thickness of the subducting plate

in the ESPM.
Rbot local radius of curvature for the bottom

surface of the plate.
Rp local radius of curvature for the centerline

of the plate.
Rtop local radius of curvature for the top surface

of the plate.
s arc length along the plate interface,

or fault width.
slock width of locked plate interface.
Te elastic plate thickness in plate flexure

models.
dV velocity perturbation to be added to

(subtracted from) the centerline
plate velocity.

Vbot velocity at the bottom surface of the plate.
Vp plate convergence velocity.

Vtop velocity at the top surface of the plate.
Vx* horizontal surface velocity normalized

by plate rate.
Vz* vertical surface velocity normalized

by plate rate.
x horizontal coordinate, positive landward,

or away from the trench.
x* horizontal coordinate, normalized

with respect to locking depth.
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xGPS,(min/max) distance range from the trench
to the nearest geodetic observation.

xhinge distance from the trench to the
location of zero vertical surface velocity.

xlock distance between trench and surface
projection of the downdip end
of the locked zone.

xmax Distance from trench to the location
of the peak in the vertical surface
velocity field.

z vertical coordinate, positive upward
(depths are therefore, negative).

z* vertical coordinate, normalized with
respect to locking depth.
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