Reflection Method

- Seismic Reflection Travel-Times have eqns of a hyperbola. For single layer over halfspace,

$$
t^{2}=\frac{x^{2}}{V_{1}^{2}}+\frac{4 h_{1}^{2}}{V_{1}^{2}} \quad \begin{aligned}
& \text { has intercept } 2 h_{1} / V_{1} \text { and } \\
& \text { slope of the asymptote is } 1 / V_{1}!
\end{aligned}
$$

- For two layers:

$$
\frac{\left(t-t_{0}\right)^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1 \Rightarrow a=2\left(\frac{h_{1}}{V_{1}}+\frac{h_{2}}{V_{2}}\right) ; \frac{b}{a}=\frac{1}{V_{2}} ; t_{0}=\frac{2 h_{1} \sqrt{V_{2}^{2}-V_{1}^{2}}}{V_{1} V_{2}}
$$

- For a dipping layer,

$$
t^{2}=\frac{x^{2}}{V_{1}^{2}}-\frac{4 h_{1} \sin (\alpha)}{V_{1}^{2}} x+\frac{4 h_{1}^{2}}{V_{1}^{2}}
$$

- Dix Equations multiple layers:

$$
V_{n_{R M S}}^{2} \cong \frac{\sum_{i=1}^{n} V_{i}^{2} \Delta t_{i}}{\sum_{i=1}^{n} \Delta t_{i}}
$$

$$
V_{n}^{2}=\frac{V_{n_{R M S}}^{2} t_{0 n}-V_{n-1}^{2}{ }_{R M S} t_{0 n-1}}{t_{0 n}-t_{0 n-1}}
$$

- Normal Move-Out (NMO): reflection travel-time at distance x minus t at $x=0$:
* For single layer case:

$$
T_{N M O}=t-t_{0}=\frac{\sqrt{x^{2}+4 h_{1}^{2}}}{V_{1}}-\frac{2 h_{1}}{V_{1}} \quad t=\frac{\sqrt{x^{2}+4 h_{1}^{2}}}{V_{1}}=\sqrt{\frac{x^{2}}{V_{1}^{2}}+\frac{4 h_{1}^{2}}{V_{1}^{2}}}=t_{0} \sqrt{1+\frac{x^{2}}{V_{1}^{2} t_{0}^{2}}}
$$

* First-order binomial series approximation:

$$
T_{N M O} \doteq \frac{x^{2}}{2 t_{0} V_{1}^{2}} \quad(\& \text { second-order }): T_{N M O} \doteq \frac{x^{2}}{2 t_{0} V_{1}^{2}}-\frac{x^{4}}{8 t_{0}^{3} V_{1}^{4}}
$$

(Useful to write travel-time in terms of only $V \&$ observed t_{0})

* Can also be applied to multiple layers using the Dix equation approximation for $V_{r m s}$:

$$
T_{N M O}=\frac{x^{2}}{2 t_{0} V_{r m s}^{2}}
$$

$$
t=\frac{\sqrt{x^{2}+4 h_{1}^{2}-4 h_{1} x \cos \left(\alpha+\frac{\pi}{2}\right)}}{V_{1}}=\frac{\sqrt{4 h_{1}^{2}+x^{2}-4 h_{1} x \sin \alpha}}{V_{1}}
$$

Image point

Dipping Layer $t-x$ equation: Minimum x, t

$$
\begin{align*}
& \widetilde{t^{2}}=\widetilde{x^{2}}-2 \tilde{x} \sin (\alpha)+1 \\
& \tilde{t}=\frac{t}{t_{0}} \Leftarrow t_{0}=\frac{2 h^{\prime}}{V} \quad \tilde{x}=\frac{x}{2 h^{\prime}} \\
& x_{\text {min }}=2 h ' \sin (\alpha) \\
& \text { (1) } \tilde{X}_{\text {min }}=\sin (\alpha) \\
& \text { (1) } \tilde{t}_{\text {min }}=\cos (\alpha) \tag{2}\\
& t_{\text {min }}=\frac{2 h^{\prime} \cos (\alpha)}{V} \\
& t_{0}=\frac{2 h^{\prime}}{V} \\
& \text { (3) } \\
& \frac{t_{0}}{t_{\text {min }}}=\cos (\alpha) \\
& \Rightarrow \alpha=\cos ^{-1}\left(\frac{t_{0}}{t_{\text {min }}}\right) \\
& \text { and } \\
& \text { (4) } h=\frac{h^{\prime}}{\cos (\alpha)} \quad(b)
\end{align*}
$$

Example: $V_{1}=1500, h=45 \mathrm{~m}, \alpha=8^{\circ}$

Helpful Hint. Reflect does not model dipping layers, but the Table 4-6 Excel spreadsheet does!

Using the same approach used earlier for a horizontal layer,

$$
t=\frac{\sqrt{4 h_{1}^{2}+x^{2}-4 h_{1} x \sin \alpha}}{V_{1}}=\sqrt{\frac{4 h_{1}^{2}}{V_{1}^{2}}\left(1+\frac{x^{2}-4 h_{1} x \sin \alpha}{4 h_{1}^{2}}\right)}=t_{0} \sqrt{1+\frac{x^{2}-4 h_{1} x \sin \alpha}{4 h_{1}^{2}}}
$$

can be expanded and truncated as

$$
t \doteq t_{0}\left(1+\frac{x^{2}-4 h_{1} x \sin \alpha}{8 h_{1}^{2}}\right)=t_{0}+\frac{x^{2}-4 h_{1} x \sin \alpha}{h_{1} V_{1}}
$$

Recall the $x^{2}-t^{2}$ plot for a dipping layer: Could average $\left(t_{+x}^{2}+t_{-x}^{2}\right) / 2$ to get a line with slope $1 / V_{1}{ }^{2}$, and the difference between the line and the limbs was related to the dip angle:

$$
t^{2}=\frac{x^{2}}{V_{1}^{2}}-\frac{4 h_{1} \sin \alpha}{V_{1}^{2}} x+\frac{4 h_{1}^{2}}{V_{1}^{2}}
$$

Binomial series approximation:
$t \doteq t_{0}+\frac{x^{2}-4 h_{1} x \sin \alpha}{4 h_{1} V_{1}} \quad t_{+x}-t_{-x} \doteq \frac{-4 h_{1} x \sin \alpha}{4 h_{1} V_{1}}-\frac{-4 h_{1}(-x) \sin \alpha}{4 h_{1} V_{1}}=-\frac{2 x \sin \alpha}{V_{1}} \equiv T_{\text {DMO }}$

