Reflection Method

- Seismic Reflection Travel-Times have eqns of a hyperbola. For single layer over halfspace,

$$
t^{2}=\frac{x^{2}}{V_{1}^{2}}+\frac{4 h_{1}^{2}}{V_{1}^{2}} \quad \begin{aligned}
& \text { has intercept } 2 h_{1} / V_{1} \text { and } \\
& \text { slope of the asymptote is } 1 / V_{1}!
\end{aligned}
$$

- Normal Move-Out (NMO): reflection travel-time at distance x minus t at $x=0$:

$$
t_{N M O}=\frac{\sqrt{x^{2}+4 h_{1}^{2}}}{V_{1}}-\frac{2 h_{1}}{V_{1}}
$$

- For two layers, algebra starts to get complicated:

$$
\frac{\left(t-t_{0}\right)^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1 \Rightarrow a=2\left(\frac{h_{1}}{V_{1}}+\frac{h_{2}}{V_{2}}\right) ; \frac{b}{a}=\frac{1}{V_{2}} ; t_{0}=\frac{2 h_{1} \sqrt{V_{2}^{2}-V_{1}^{2}}}{V_{1} V_{2}}
$$

- For a dipping layer,

$$
t^{2}=\frac{x^{2}}{V_{1}^{2}}-\frac{4 h_{1} \sin (\alpha)}{V_{1}^{2}} x+\frac{4 h_{1}^{2}}{V_{1}^{2}}
$$

Getting velocity structure: The $x^{2}-t^{2}$ method

If we have travel-times from a reflection, can plot t^{2} vs x^{2} to get parameters of thickness \& velocity from slope and intercept of the resulting line fit!

Recall that the goal of geophysics is to invert for parameters (in this case, velocity and thickness)

Given travel-times from a reflection, can plot t^{2} vs x^{2} to get parameters of thickness \& velocity from slope and intercept of the resulting line fit.

For the single layer case:

$$
t=\frac{\sqrt{x^{2}+4 h_{1}^{2}}}{V_{1}} \Rightarrow t^{2}=\frac{1}{V_{1}^{2}} x^{2}+4 \frac{h_{1}^{2}}{V_{1}^{2}}
$$

So for slope m, intercept $t_{0}{ }^{2}$ of a line fit:

Note the single-layer approximation is the approach taken to inverting data in Reflect!

Model Crosssection

Also works for multiple layersHowever instead of explicitly solving e.g.:

$$
V_{2}^{2}\left(t-\frac{2 h_{1} \sqrt{V_{2}^{2}-V_{1}^{2}}}{V_{1} V_{2}}\right)^{2}-x^{2}=\left\{2\left[h_{1}\left(1-\frac{\sqrt{V_{2}^{2}-V_{1}^{1}}}{V_{1} V_{2}}\right)+h_{2}\right]\right\}^{2}
$$

Model traces for 2 reflected waves

We use an approximation called the Dix Equation

Recall multiple layer case:

Solving for path length in each layer using Snell's law results in a complicated function of all velocities \& thicknesses...

Green's method: Uses $x^{2}-t^{2}$ and ignores bending of the ray to get approximate thicknesses and velocities of second, third etc layers using the single-layer equation...

Recall multiple layer case:

Green's method:

$$
\begin{aligned}
& t=2 \sqrt{\frac{x^{2}}{4}+\left(h_{1}+h_{2}\right)^{2}}\left(\frac{h_{1}}{V_{1}\left(h_{1}+h_{2}\right)}+\frac{h_{2}}{V_{2}\left(h_{1}+h_{2}\right)}\right) \frac{\dot{\zeta}}{\dot{5}} \\
& t^{2}=\left[x^{2}+4\left(h_{1}+h_{2}\right)^{2}\right]\left(\frac{h_{1} V_{2}+h_{2} V_{1}}{V_{1} V_{2}\left(h_{1}+h_{2}\right)}\right)^{2}
\end{aligned}
$$

Dix' Equation:

Improves slightly on Green's method because it is a closer approximation of the true physics. We define a root mean square (RMS) velocity for n layers as: $\quad \sum^{n} V_{i}^{2} \Delta t_{i} \quad \sum^{n} V_{i} h_{i} \quad$ Here Δt_{i} is the one-way vertical $V_{n_{\text {RUS }}}^{2} \cong \frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n} \Delta t_{i}}=\frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n} \frac{h_{i}}{V_{i}}}$ travel-time throu
Then on an $x^{2}-t^{2}$ plot,

$$
\begin{aligned}
& t^{2}=\frac{1}{V_{n_{\text {Rus }}}^{2}} x^{2}+t_{0}^{2} \quad \text { for layer } n \\
& V_{n}^{2}=\frac{V_{n_{\text {RUS }}}^{2} \sum_{i=1}^{n} \Delta t_{i}-V_{n-1_{\text {RUS }}}^{2} \sum_{i=1}^{n-1} \Delta t_{i}}{\Delta t_{n}} ; \quad \sum_{i=1}^{n} \Delta t_{i}=\frac{t_{0 n}}{2} ; \quad \Delta t_{n}=\frac{t_{0 n}-t_{0 n-1}}{2} \\
& \Rightarrow V_{n}^{2}=\frac{V_{n \text { Rus }}^{2} t_{0 n}-V_{n-1 \text { Rnss }}^{2} t_{0 n-1}}{t_{0 n}-t_{0 n-1}}
\end{aligned}
$$

Caveat:
Recall that Dix' equation is an approximation.
After refraction in overlying layers, reflections from the $2^{\text {nd }+}$ interface, e.g. (2-layer case)

$$
V_{2}^{2}\left(t-\frac{2 h_{1} \sqrt{V_{2}^{2}-V_{1}^{2}}}{V_{1} V_{2}}\right)^{2}-x_{1}^{2}=\left\{2\left[h_{1}\left(1-\frac{\sqrt{V_{2}^{2}-V_{1}^{1}}}{V_{1} V_{2}}\right)+h_{2}\right]\right\}^{2}
$$

contains a ($2^{2-2 a t+a}$) term. (We ignored this.)
Generally, approximation is good for small offsets, poorer further out.

	TRUE	Green's			Dix'		
Parameters	Model	30 m	60 m	120 m	30 m	60 m	120 m
Velocity 1 (m/s)	400	400	400	400	400	400	400
Velocity 2 (m/s)	1800	2250	2293	2411	1812	1839	1912
Velocity 3 (m/s)	3500	5254	5585	6529	3542	3736	4234
Thickness 1 (m)	10	10	10	10	10	10	10
Thickness 2 (m)	40	50	51	54	40	41	43
Thickness 3 (m)	10	15	16	19	10	11	12

Normal Move-Out and the dipping layer problem:

Recall our definition of $\mathbf{N M O}$ for a single horizontal layer:

$$
T_{N M O}=t-t_{0}=\frac{\sqrt{x^{2}+4 h_{1}^{2}}}{V_{1}}-\frac{2 h_{1}}{V_{1}}
$$

We can write:

$$
t=\frac{\sqrt{x^{2}+4 h_{1}^{2}}}{V_{1}}=\sqrt{\frac{x^{2}}{V_{1}^{2}}+\frac{4 h_{1}^{2}}{V_{1}^{2}}}=t_{0} \sqrt{1+\frac{x^{2}}{V_{1}^{2} t_{0}^{2}}}
$$

The binomial theorem tells us that:

$$
(1+z)^{a}=1+a z+\frac{a(a-1)}{2!} z^{2}+\frac{a(a-1)(a-2)}{3!} z^{3}+\cdots
$$

So letting $a=\frac{1}{2}$ and $z=\frac{x^{2}}{V_{1}^{2} t_{0}^{2}}$, and assuming $z \ll 1$ (i.e. $\frac{x}{2 h_{1}} \ll 1$) then

$$
t=t_{0}+\frac{x^{2}}{2 t_{0} V_{1}^{2}} \quad \text { and } \quad T_{\text {NMO }}=\frac{x^{2}}{2 t_{0} V_{1}^{2}}
$$

Note: If x is not $\ll 2 h$, we could expand the series further...

$$
T_{M M O}=\frac{x^{2}}{2 t_{0} V_{1}^{2}}-\frac{x^{4}}{8 t_{0}^{3} V_{1}^{4}} \quad \text { (but that gets messy) }
$$

This from the text, using a $1500 \mathrm{~m} / \mathrm{s}$ velocity in a 30 m thick layer...

Why express the reflection travel-time this way if it is inaccurate?

Because now we can write $T_{N M O}$ in terms of the observed t_{0} !

