Reflection Method

• Seismic Reflection Travel-Times have eqns of a hyperbola. For single layer over halfspace,

 $t^2 = \frac{x^2}{V_1^2} + \frac{4h_1^2}{V_1^2}$

has *intercept* $2h_1/V_1$ and *slope of the asymptote* is $1/V_1!$

• **Normal Move-Out (NMO)**: reflection travel-time at distance x minus t at x = 0:

$$t_{\rm NMO} = \frac{\sqrt{x^2 + 4h_1^2}}{V_1} - \frac{2h_1}{V_1}$$

• For two layers, algebra starts to get complicated:

$$\frac{\left(t-t_0\right)^2}{a^2} - \frac{x^2}{b^2} = 1 \implies a = 2\left(\frac{h_1}{V_1} + \frac{h_2}{V_2}\right); \frac{b}{a} = \frac{1}{V_2}; t_0 = \frac{2h_1\sqrt{V_2^2 - V_1^2}}{V_1V_2}$$

• For a dipping layer,

$$t^{2} = \frac{x^{2}}{V_{1}^{2}} - \frac{4h_{1}\sin(\alpha)}{V_{1}^{2}}x + \frac{4h_{1}^{2}}{V_{1}^{2}}$$

Getting velocity structure: The $x^2 - t^2$ *method*

If we have travel-times from a reflection, can plot t^2 vs x^2 to get parameters of thickness & velocity from slope and intercept of the resulting line fit!

Recall that the goal of geophysics is to *invert for parameters* (in this case, velocity and thickness)

Given travel-times from a reflection, can plot t^2 vs x^2 to get parameters of thickness & velocity from slope and intercept of the resulting line fit.

For the single layer case:

$$t = \frac{\sqrt{x^2 + 4h_1^2}}{V_1} \implies t^2 = \frac{1}{V_1^2}x^2 + 4\frac{h_1^2}{V_1^2}$$

So for slope *m*, intercept t_0^2 of a line fit:

Note the single-layer approximation is the approach taken to inverting data in *Reflect*!

Also works for multiple layers– However instead of explicitly solving e.g.:

We use an approximation called the *Dix Equation*

Recall multiple layer case:

Solving for path length in each layer using Snell's law results in a complicated function of all velocities & thicknesses...

Green's method: Uses $x^2 - t^2$ and ignores bending of the ray to get approximate thicknesses and velocities of second, third etc layers using the single-layer equation...

Recall multiple layer case:

Green's method:

$$t = 2\sqrt{\frac{x^2}{4} + (h_1 + h_2)^2} \left(\frac{h_1}{V_1(h_1 + h_2)} + \frac{h_2}{V_2(h_1 + h_2)}\frac{1}{\frac{1}{2}}\right)$$
$$t^2 = \left[x^2 + 4(h_1 + h_2)^2\right] \left(\frac{h_1V_2 + h_2V_1}{V_1V_2(h_1 + h_2)}\frac{1}{\frac{1}{2}}\right)$$

Dix' Equation:

Improves slightly on Green's method because it is a closer approximation of the true physics. We define a

root mean square (RMS) velocity for n layers

as: $\sum_{i=1}^{n} V_i^2 \Delta t_i$ $\sum_{i=1}^{n} V_i h_i$ Here Δt_i is the one-way vertical

$$\Delta t_i = \frac{n_i}{V_i}$$

Then on an $x^2 - t^2$ plot,

$$t^{2} = \frac{1}{V_{n_{RMS}}^{2}} x^{2} + t_{0}^{2} \quad \text{for layer } n$$

$$V_{n}^{2} = \frac{V_{n_{RMS}}^{2} \sum_{i=1}^{n} \Delta t_{i} - V_{n-1_{RMS}}^{2} \sum_{i=1}^{n-1} \Delta t_{i}}{\Delta t_{n}} ; \quad \sum_{i=1}^{n} \Delta t_{i} = \frac{t_{0n}}{2} ; \quad \Delta t_{n} = \frac{t_{0n} - t_{0n-1}}{2}$$

$$\Rightarrow V_{n}^{2} = \frac{V_{n_{RMS}}^{2} t_{0n} - V_{n-1_{RMS}}^{2} t_{0n-1}}{t_{0n} - t_{0n-1}}$$

Caveat:

Recall that Dix' equation is an *approximation*. After refraction in overlying layers, reflections from the 2nd+ interface, e.g. (2-layer case)

$$V_{2}^{2}\left(t - \frac{2h_{1}\sqrt{V_{2}^{2} - V_{1}^{2}}}{V_{1}V_{2}}\right)^{2} - x_{1}^{2} = \left\{2\left[h_{1}\left(1 - \frac{\sqrt{V_{2}^{2} - V_{1}^{1}}}{V_{1}V_{2}}\right) + h_{2}\right]\right\}^{2}$$

contains a $(t^{2} - 2at + a^{2})$ term. (We ignored this.)

Generally, approximation is good for small offsets, poorer further out.

	TRUE	Green's			Dix'		
Parameters	Model	30 m	60 m	120 m	30 m	60 m	120 m
Velocity 1 (m/s)	400	400	400	400	400	400	400
Velocity 2 (m/s)	1800	2250	2293	2411	1812	1839	1912
Velocity 3 (m/s)	3500	5254	5585	6529	3542	3736	4234
Thickness 1 (m)	10	10	10	10	10	10	10
Thickness 2 (m)	40	50	51	54	40	41	43
Thickness 3 (m)	10	15	16	19	10	11	12

Normal Move-Out and the dipping layer problem:

Recall our definition of *NMO* for a single horizontal layer:

$$T_{NMO} = t - t_0 = \frac{\sqrt{x^2 + 4h_1^2}}{V_1} - \frac{2h_1}{V_1}$$

We can write:

$$t = \frac{\sqrt{x^2 + 4h_1^2}}{V_1} = \sqrt{\frac{x^2}{V_1^2} + \frac{4h_1^2}{V_1^2}} = t_0\sqrt{1 + \frac{x^2}{V_1^2}t_0^2}$$

The *binomial theorem* tells us that:

$$(1+z)^{a} = 1 + az + \frac{a(a-1)}{2!}z^{2} + \frac{a(a-1)(a-2)}{3!}z^{3} + \cdots$$

So letting
$$a = \frac{1}{2}$$
 and $z = \frac{x^2}{V_1^2 t_0^2}$, and **assuming** $z \ll 1$
(i.e. $\frac{x}{2h_1} \ll 1$) then
 $t \doteq t_0 + \frac{x^2}{2t_0V_1^2}$ and $T_{NMO} \doteq \frac{x^2}{2t_0V_1^2}$

Note: If x is not $\ll 2h$, we could expand the series further...

$$T_{NMO} \doteq \frac{x^2}{2t_0 V_1^2} - \frac{x^4}{8t_0^3 V_1^4} \quad \text{(but that gets messy)}$$

Why express the reflection travel-time this way if it is inaccurate?

Because now we can write T_{NMO} in terms of the observed $t_0!$