Refraction from an irregular surface: Delay-Time Method

Define delay time as the time the ray traveled in layer 1 along a "slant path", less the time it would have taken to travel the horizontal distance (AB) at velocity V_{2}. Thus, the total delay time $\tau_{E G}$ traveling from E to G (or G to E) is

$$
\tau_{E G}=t_{R}-\frac{y}{V_{2}}, \text { where } t_{R} \text { is total travel time }
$$

Delay time under $\mathrm{E}: \quad \tau_{E}=t_{R}-\frac{y}{V_{2}}-\tau_{G}=\frac{E B}{V_{1}}-\frac{A B}{V_{2}}$

$$
\tau_{E}=\frac{h_{E}}{V_{1} \cos i_{c}}-\frac{h_{E} \tan i_{c}}{V_{2}}=h_{E} \frac{\sqrt{V_{2}^{2}-V_{1}^{2}}}{V_{1} V_{2}} \Rightarrow h_{E}=\tau_{E} \frac{V_{1} V_{2}}{\sqrt{V_{2}^{2}-V_{1}^{2}}}
$$

(This is half of the "time intercept" on our $t-x$ plots!)

(b)

(c)

Key Assumptions

τ_{H} from $\mathrm{E} \approx \tau_{H}$ from G

Refractor surfaces are planar

* Beneath source
* Beneath geophone

Refractor surface undulations are small compared to its extent

- i.e., long wavelength, with dips $<10^{\circ}$

Refraction from an irregular surface: Delay-Time Method

$t_{E H}+t_{G H} \rightarrow \tau_{H}=\frac{t_{E H}+t_{G H}-t_{E G}}{2} \quad h_{H}=\tau_{H} \frac{V_{1} V_{2}}{\sqrt{V_{2}^{2}-V_{1}^{2}}}$
Problem however: to get h_{H} from τ_{H}, we need to know V_{2} ! However, we have:
$t_{E H}-t_{G H}=\left(\tau_{E}+\tau_{H}+\frac{x}{V_{2}} \div\left(\tau_{G}+\tau_{H}+\frac{y-x}{V_{2}} \div \frac{\dot{G}}{)}=\tau_{E}-\tau_{G}-\frac{y}{V_{2}}+\frac{2 x}{V_{2}}\right.\right.$
(\Rightarrow a line with slope $2 / V_{2}$!)

Delay Time, or "Plus-Minus" Method

- Plot $t_{1 i}-t_{2 i}$ vs x_{i} for SP1, SP2 and all geophones i.
- Calculate V_{2} from slope of the line fit $\left(V_{2}=2 / m\right)$.
- At each geophone i, calculate thickness as:

$$
h_{i}=\left(\frac{t_{1 i}+t_{2 i}-t_{12}}{2}\right) \frac{V_{1} V_{2}}{\sqrt{V_{2}^{2}-V_{1}^{2}}}
$$

Key Field considerations

* Local Geology
* Spread-lengths

(b)

(c)

(d)

Introduction to Applied Geophysics Copyright © 2006 W. W. Norton \& Company

- bedrock depths of 50-70 m
- $L_{\text {min }}+\boldsymbol{n} . \Delta \boldsymbol{x}_{\text {take-out }}$
- Typically, $\boldsymbol{L}_{\min } \sim 200 m, \boldsymbol{n}>3$
* Geophone coupling
- Auger 1 m deep holes
- Fill with water to saturate
* Elevation effects
- Minimize OR use elevation corrections
* Wind
- calm day
- night-time
* Continual Traffic
- vehicles, trains
- pedestrians
* Source
- Hammer or shotgun?
* Signal Attenuation
* Noise filtering

