Last time: The Refraction Method

• For a **single horizontal layer over a halfspace**, observed travel-times for direct and refracted arrivals:

$$
t = \frac{x}{V_1} \qquad t = \frac{x}{V_2} + \frac{2h\sqrt{V_2^2 - V_1^2}}{V_1V_2}
$$

give the velocities and layer thickness from $t = m_i x + b_i$ as:

$$
V_1 = \frac{1}{m}
$$
 $V_2 = \frac{1}{m_2}$ $h = \frac{b_2 V_1 V_2}{2 \sqrt{V_2^2 - V_1^2}}$

• The **crossover distance**, x_{co} can be used in experiment design, to ensure adequate geophone sampling: V_{\perp}

$$
x_{\rm co} = 2h \sqrt{\frac{v_2 + v_1}{V_2 - V_1}}
$$

• For an *n*-layer Earth:

$$
t = \frac{x}{V_n} + \sum_{i=1}^{n-1} \frac{2h_i\sqrt{V_n^2 - V_i^2}}{V_nV_i}
$$

Read for Monday: **Burger** 106-141 (§3.7-3.11)

Last time: The Refraction Method

Like before, we have the **observed** travel-times and want to know the **model parameters**. We know V_1 from the direct arrival, & we know the slopes are:

$$
m_{\rm L} = \frac{\sin(i_{\rm c} - \alpha)}{V_{\rm L}} \qquad m_{\rm H} = \frac{\sin(i_{\rm c} + \alpha)}{V_{\rm L}}
$$

then we can solve for velocity V_2 :

$$
i_c = \frac{\sin^{-1}(V_1 m_u) + \sin^{-1}(V_1 m_d)}{2} \left\{ = \sin^{-1}\left(\frac{V_1}{V_2}\right) \right\} \implies V_2 = V_1 \left/ \sin \left\{ \frac{\sin^{-1}(V_1 m_u) + \sin^{-1}(V_1 m_d)}{2} \right\}
$$

$$
\sin^{-1}(V_1 m_u) = \sin^{-1}(V_1 m_u)
$$

and angle:

$$
\alpha = \frac{\sin^{-1}(V_1 m_d) - \sin^{-1}(V_1 m_d)}{2}
$$

The normal thicknesses use intercept times $t_{\textit{ou}}$, $t_{\textit{od}}$:

$$
h_d = \frac{t_{0d}V_1}{2\cos l_c} \qquad h_u = \frac{t_{0u}V_1}{2\cos l_c}
$$

(Can get vertical distance from shot to top of layer by dividing h_d or h_u by $\cos \alpha$).

Dipping Layer t-x equations: Graphical solution

$$
\sin(\theta_c) = \frac{V_1}{V_2}
$$
\n
$$
t_D = \frac{x}{V_1} \implies m_0 = 1/V_1
$$
\n
$$
t_u = \frac{x}{V_1} \sin(\theta_c - \alpha) + \frac{2h_u \cos(\theta_c)}{V_1} = m_u x + t_{0u}
$$
\n
$$
t_d = \frac{x}{V_1} \sin(\theta_c + \alpha) + \frac{2h_d \cos(\theta_c)}{V_1} = m_d x + t_{0d}
$$

We have

(1)
$$
V_1 = \frac{1}{m_0} = \frac{x}{t} (x \le x_{co})
$$

(2)
$$
\sin^{-1}\left(\frac{m_d}{m_0}\right) - \sin^{-1}\left(\frac{m_u}{m_0}\right) - \frac{m_u}{2}
$$

$$
(3) \quad \theta_c = \frac{\sin^{-1}(\frac{m_d}{m_0}) + \sin^{-1}(\frac{m_u}{m_0})}{2}
$$

and

$$
V_2 = \frac{V_1}{\sin(\theta_c)} \qquad (a)
$$

 \mathbf{C}

$$
\begin{array}{ll}\n\textbf{(4)} & h_d = \frac{t_{0d}}{2 \, m_0 \cos(\theta_c)} & \textbf{(b)} \\
& h_u = \frac{t_{0u}}{2 \, m_0 \cos(\theta_c)} & \textbf{(c)}\n\end{array}
$$

Some Limitations of the Refraction Method:

- *It does not get returns from* low velocity layers*.* This means that not only does your best-fitting model not include the low velocity layer, but also estimates of the **depth** to top of all subsequent layers will be overestimated.
- Thin layers *may be* aliased *by geophone spacing, & in some cases will be missed regardless of spacing*! As with the low velocity layer, this won't affect velocity estimates for lower layers but will affect depth (in this case depth is underestimated).

Hidden Layer Problem

Layers may not be detected by first arrival analysis: A. Velocity inversion produces no critical refraction from layer 2

B. Insufficient velocity contrast makes refraction difficult to identify C. Refraction from thin layer does not become first arrival D. Geophone spacing too large to identify second refraction

 (A) Arrivals from layer 3 (V2) v, Time f \overline{c} V_x < V_y $\overline{3}$ \boldsymbol{V}_s Offset distance x (B) Arrivals from layer 3 (V₃) v. Time f $\overline{\mathbf{z}}$ $V_2 = V_1$ $V_{\rm s}$ \mathbf{a} Offset distance x Arruals from layer 2 (V2). Arrivals from layer 3 (V, (C) Time I Offset distance x Arrivals from layer 3(V. (D) Time f v. nsampled arrivals $\overline{\mathbf{2}}$ v, from layer 2 $V_{\rm s}$ $\mathbf{3}$ Offset distance x

(Note however that just because the refraction isn't the first arrival, doesn't mean it isn't there!)

shale

gas sand

shale

Example for a synthetic seismogram

What if velocity changes within layers?

Basically have a difference in the intercept times on one part of the geophone string relative to the other:

$$
t_{0a} - t_{0b} = \frac{z \cos i_c}{V_1} = \frac{z \sqrt{V_2^2 - V_1^2}}{V_1 V_2}
$$

$$
z = \frac{(t_{0a} - t_{0b}) V_1 V_2}{\sqrt{V_2^2 - V_1^2}}
$$