Last time: The Refraction Method

- For a single horizontal layer over a halfspace, observed travel-times for direct and refracted arrivals:

$$
t=\frac{x}{V_{1}} \quad t=\frac{x}{V_{2}}+\frac{2 h \sqrt{V_{2}^{2}-V_{1}^{2}}}{V_{1} V_{2}}
$$

give the velocities and layer thickness from $t=m_{i} x+b_{i}$ as:

$$
V_{1}=\frac{1}{m} \quad V_{2}=\frac{1}{m_{2}} \quad h=\frac{b_{2} V_{1} V_{2}}{2 \sqrt{V_{2}^{2}-V_{1}^{2}}}
$$

- The crossover distance, $\boldsymbol{x}_{c o}$ can be used in experiment design, to ensure adequate geophone sampling:

$$
x_{c o}=2 h \sqrt{\frac{V_{2}+V_{1}}{V_{2}-V_{1}}}
$$

- For an n-layer Earth:

$$
t=\frac{x}{V_{n}}+\sum_{i=1}^{n-1} \frac{2 h_{i} \sqrt{V_{n}^{2}-V_{i}^{2}}}{V_{n} V_{i}}
$$

Read for Monday: Burger 106-141 (§3.7-3.11)

Formard Calc. - Reverse Calc. F Forward Obs. 1 Reverse 0 bs.

Refraction from a dipping interface:

Now thickness changes with offset, so slope is no longer = inverse of layer velocity. Refer to as "apparent velocity", and this is why we reverse our shots!

After some trig \& algebra, we get:

$$
t_{c d}=\frac{2 h_{u} \cos i_{c}}{V_{1}}+\frac{x}{V_{1}} \sin \left(i_{c}-\alpha\right) \quad t_{d d}=\frac{2 h_{d} \cos i_{c}}{V_{1}}+\frac{x}{V_{1}} \sin \left(i_{c}+\alpha\right)
$$

Like before, we have the observed travel-times and want to know the model parameters. We know V_{1} from the direct arrival, \& we know the slopes are:

$$
m_{U}=\frac{\sin \left(i_{c}-\alpha\right)}{V_{1}} \quad m_{d}=\frac{\sin \left(i_{c}+\alpha\right)}{V_{1}}
$$

then we can solve for velocity V_{2} :
$i_{c}=\frac{\sin ^{-1}\left(V_{1} m_{u}\right)+\sin ^{-1}\left(V_{1} m_{d}\right)}{2}\left\{=\sin ^{-1}\left(\frac{V_{1}}{V_{2}}\right)\right\} \Rightarrow V_{2}=V_{1} / \sin \left\{\frac{\sin ^{-1}\left(V_{1} m_{u}\right)+\sin ^{-1}\left(V_{1} m_{d}\right)}{2}\right\}$
and angle: $\quad \alpha=\frac{\sin ^{-1}\left(V_{1} m_{d}\right)-\sin ^{-1}\left(V_{1} m_{u}\right)}{2}$
The normal thicknesses use intercept times $t_{o u}, t_{o d}$:

$$
h_{d}=\frac{t_{0} V_{1}}{2 \cos i_{c}} \quad h_{u}=\frac{t_{0} V_{1}}{2 \cos i_{c}}
$$

(Can get vertical distance from shot to top of layer by dividing h_{d} or h_{u} by $\cos \alpha$).

Dipping Layer t-x equations: Graphical solution

We have:

$$
\begin{gathered}
\sin \left(\theta_{c}\right)=\frac{V_{1}}{V_{2}} \\
t_{D}=\frac{x}{V_{1}} \quad \Rightarrow \quad m_{0}=1 / V_{1}
\end{gathered}
$$

$$
\begin{aligned}
& t_{u}=\frac{x}{V_{1}} \sin \left(\theta_{c}-\alpha\right)+\frac{2 h_{u} \cos \left(\theta_{c}\right)}{V_{1}}=m_{u} x+t_{0 u} \\
& t_{d}=\frac{x}{V_{1}} \sin \left(\theta_{c}+\alpha\right)+\frac{2 h_{d} \cos \left(\theta_{c}\right)}{V_{1}}=m_{d} x+t_{0 d}
\end{aligned}
$$

(1) $\quad V_{1}=\frac{1}{m_{0}}=\frac{x}{t}\left(x \leq x_{c o}\right)$
(3) $\theta_{c}=\frac{\sin ^{-1}\left(\frac{m_{d}}{m_{0}}\right)+\sin ^{-1}\left(\frac{m_{u}}{m_{0}}\right)}{2}$
(2) $\alpha=\frac{\sin ^{-1}\left(\frac{m_{d}}{m_{0}}\right)-\sin ^{-1}\left(\frac{m_{u}}{m_{0}}\right)}{2}$
and (4) $h_{d}=\frac{t_{0 d}}{2 m_{0} \cos \left(\theta_{c}\right)}$

$$
\begin{equation*}
h_{u}=\frac{t_{0 u}}{2 m_{0} \cos \left(\theta_{c}\right)} \tag{b}
\end{equation*}
$$

Aside: Solving for parameters in this way is a simple form of inversion of the data
Most geophysical (\& geological, \& other) problems can be expressed as:
observations = some function of parameters

$$
\vec{d}=F(\vec{m}) \quad \text { (arrow denotes plural: a vector) }
$$

Inverse theory, in which we seek to find

$$
\vec{m}=F^{-1}(\vec{d})
$$

is a very important part of geophysics!

Equations for multiple dipping layers: Derived using an approach similar (but slightly more algebraically complicated) to that used for the multi-horizontal-layer case [Adachi]:

$$
t_{u d}=\frac{x \sin d_{1}}{V_{1}}+\sum_{i=1}^{n-1} \frac{z_{u i}}{V_{i}}\left(\cos u_{i}+\cos d_{i}\right) \quad t_{d d}=\frac{x \sin u_{1}}{V_{1}}+\sum_{i=1}^{n-1} \frac{z_{d i}}{V_{i}}\left(\cos u_{i}+\cos d_{i}\right)
$$

(These are the equations used in Refract)

