Geology 5660/6660: Applied Geophysics Lecture 09

Topics covered so far (& today):

Seismic Amplitude depends on Source amplitude Geometrical Spreading (spread of energy in increasing volume).

Uniform halfspace *spherical spreading*:

For refracted head wave, cylindrical spreading:

Anelastic Attenuation depends on Quality Factor Q: $A = A_0 e^{QV}$

Mode Partitioning at interfaces (reflection, refraction): Energy density: J/m^3 $\hat{u} = \mu k^2 A^2/4 = \rho \omega^2 A^2/4 = k \Rightarrow \hat{e} = \rho \omega^2 A^2/2$ Energy flux density: J/s/m or W/m $\hat{e}.\Delta S = \rho \Delta S \omega^2 A^2/2$, where, ΔS = Surface area Energy flux: $J/s/m^2$ or W/m^2 $\hat{e}.c = \rho c \omega^2 A^2/2$, where, $c = (\alpha \text{ or } \beta)$

Ravi Kanda, Spring 2020

 $A = \frac{A_0}{r}$ $A = \frac{A_0}{\sqrt{r}}$

FIGURE 2.23g

Introduction to Applied Geophysics Copyright © 2006 W. W. Norton & Company

Mode Conversions:

However Snell's law gives no information about *amplitudes*!

Ravi Kanda, Spring 2020

Mode Conversions:

Consider particle DISPLACEMENTS & TRACTIONS at the interface: (a) u_1 , u_3 are nonzero ($u_2 = 0$) and must be continuous across the boundary:

$$U_1^+ = U_1^- \qquad U_3^+ = U_3^-$$

(b) Tractions must also be continuous, which leads to:

$$\sigma_{13}^+ = \sigma_{13}^- \quad \sigma_{11}^+ = \sigma_{11}^-$$

Ravi Kanda, Spring 2020

(c) Finally, energy must be conserved:Sum of energy in reflected/refracted wave amplitudes = incident wave energy.

$$u_1^+ = u_1^- \Longrightarrow A_0 + A_1 + B_1 \cot j_1 = A_2 - B_2$$
 (1)

$$\boldsymbol{U}_{3}^{+} = \boldsymbol{U}_{3}^{-} \Longrightarrow \left(\boldsymbol{A}_{0} - \boldsymbol{A}_{1}\right) \cot \boldsymbol{i}_{0} - \boldsymbol{B}_{1} = \boldsymbol{A}_{2} \cot \boldsymbol{i}_{2} - \boldsymbol{B}_{2}$$
⁽²⁾

$$\sigma_{13}^{+} = \sigma_{13}^{-} \Rightarrow \rho_{1}\beta_{1}^{2} \Big[\Big(1 - \cot^{2} i_{1} \Big) \Big(A_{0} + A_{1} \Big) - 2B_{1} \cot j_{1} \Big]$$

$$= \rho_{2}\beta_{2}^{2} \Big[\Big(1 - \cot^{2} i_{2} \Big) A_{2} - 2B_{2} \cot j_{2} \Big]$$

$$\sigma_{11}^{+} = \sigma_{11}^{-} \Rightarrow \rho_{1}\beta_{1}^{2} \Big[\Big(A_{0} - A_{1} \Big) \cot i_{1} + \Big(\cot^{2} j_{1} - 1 \Big) B_{1} \Big]$$

$$= \rho_{2}\beta_{2}^{2} \Big[2A_{2} \cot i_{2} + \Big(\cot^{2} j_{2} - 1 \Big) B_{2} \Big]$$
(4)

These four equations in five unknowns (A_0 , A_1 , B_1 , A_2 , B_2) are called the *Zoeppritz'Equations*. If we fix the amplitude for the incident wave (e.g., $A_0 = 1$), we can solve for the other four.

Reflected & refracted amplitudes depend on Impedence Contrast, which is a function of energy partitioning at the boundary. Recall that Energy flux ($J/s/m^2$ or W/m^2), $\hat{e}.c = \rho c \omega^2 A^2/2$, where, $c = (\alpha \text{ or } \beta)$

So, as the wave moves from layer 1 to 2 (ignoring scattering):

$$\rho_{1}c_{1}\omega^{2}A_{1}^{2}/2 = \rho_{2}c_{2}\omega^{2}A_{2}^{2}/2$$

$$\Rightarrow \qquad A_{2}/A_{1} = \sqrt{\{(\rho_{1}c_{1})/(\rho_{2}c_{2})\}} = \sqrt{(Z_{1}/Z_{2})}$$

A normally-incident ($\theta = 0$) P-/S-wave with amplitude A_i produces a **reflected P/S** with amplitude ($V = \alpha$ or β):

$$\frac{A_{rfl}}{A_i} = \frac{\rho_2 V_2 - \rho_1 V_1}{\rho_2 V_2 + \rho_1 V_1} \equiv \frac{Z_2 - Z_1}{Z_2 + Z_1} \quad (reflection \ coefficient)$$

and a *refracted P/S*:

$$\frac{A_{rfr}}{A_i} = \frac{2\rho_1 V_1}{\rho_2 V_2 + \rho_1 V_1} \equiv \frac{2Z_1}{Z_2 + Z_1} \quad (refraction \ coefficient)$$

where $Z_i = \rho_i V_i$ is the *impedance* in layer *i*. These amplitude ratios are sometimes "energy normalized" by multiplying with the ratio $\sqrt{(Z_2/Z_1)}$

Ravi Kanda, Spring 2020

Model from: http://www.crewes.org/ ResearchLinks/ ExplorerPrograms/ZE/ index.html

$$ho_1 = 2000, \
ho_2 = 2200 \ (kg/m^3)$$

$$\alpha_1 = 3000, \ \alpha_2 = 4000 \ (m/s)$$

$$\beta_1 = 1500, \ \beta_2 = 2000 \ (\text{m/s})$$

