Gravity Anomaly: Spherical Source

Recall gravitational acceleration from a spherical source is given by: $\Delta \vec{g}=\hat{r} \frac{G \Delta m}{r^{2}}$ We measure Δg along a $\sim f l a t ~(g r o u n d) ~ s u r f a c e ~(i . e ., ~ x ~ v a r i e s ~ b u t ~ d i s ~ f i x e d) . ~ S o, ~$

$$
\Delta \vec{g}=\hat{r} \frac{G \Delta m}{x^{2}+d^{2}}=\hat{r} \frac{4 \pi G R^{3} \Delta \rho}{3\left(x^{2}+d^{2}\right)}
$$

Thus,

$$
\Delta g_{z}=\frac{4 \pi G R^{3} \Delta \rho}{3\left(x^{2}+d^{2}\right)} \cos \theta=\frac{4 \pi G R^{3} \Delta \rho d}{3\left(x^{2}+d^{2}\right)^{\frac{3}{2}}}
$$

Diapir: For a 2 km diameter sphere ($r=1 \mathrm{~km}$) buried 2 km deep (d), and having a density contrast $\Delta \rho$ of $1000 \mathrm{~kg} / \mathrm{m}^{3}$:

$$
\Delta g_{z, \max } \sim 7 \mathrm{~m} \text {-Gal, or } 7000 \mu \text {-Gal }
$$

This is small relative to many gravity corrections discussed in the last module, which is why we need to estimate the residual anomaly, Δg_{i} accurately \& precisely.

Gravity Anomaly: Spherical Source

NOTE: Given only the gravity anomaly, the source of gravity is non-unique!

Saltus \& Blakely, GSA Today 2011

We would estimate the same anomaly, if the sphere:

Had Higher density contrast, $\Delta \rho$

+ smaller radius, R

> OR

Were at greater depth, d

+ had larger radius, R

However gravity unfairly gets a bad rap: ALL geophysical (\& ALL geological) models are non-unique. Gravity narrows the solution space (the range of possible solutions).

Gravity Anomaly: Infinite slender "rod"

For a horizontal cylindrical source extending in-and-out of this page, we again measure
 with the anomaly associated with an infinite slender "rod", also extending in-and-out of the plane of this page, with a mass per unit length $\boldsymbol{\lambda}$, and at a depth, \boldsymbol{d}.

Mass of differential element, $d m=\lambda d y$
so that

$$
\begin{equation*}
d\left(\delta g_{\text {rod }}\right)=\frac{G d m}{r^{2}} \cos \theta=\frac{G(\lambda d y)}{\left[y^{2}+\left(x^{2}+d^{2}\right)\right]}\left(\frac{d}{\sqrt{\left[y^{2}+\left(x^{2}+d^{2}\right)\right]}}\right)=G \lambda d\left(\frac{d y}{\sqrt{\left[y^{2}+\left(x^{2}+d^{2}\right)\right]^{3}}}\right) \tag{1}
\end{equation*}
$$

So,

$$
\begin{aligned}
\delta g_{\text {rod }} & =G \lambda d \int_{-\infty}^{\infty}\left(\frac{d y}{\sqrt{\left[y^{2}+\left(x^{2}+d^{2}\right)\right]^{3}}}\right) ; \text { Substitute } y=\left(x^{2}+d^{2}\right) \tan (\theta) \Rightarrow d y=\left(x^{2}+d^{2}\right) \sec ^{2}(\theta) d \theta \\
& =\frac{G \lambda d}{\left(x^{2}+d^{2}\right)} \int_{\theta=-\frac{\pi}{2}}^{2} \cos (\theta) d \theta \\
& =\frac{G \lambda d}{\left(x^{2}+d^{2}\right)}\left\langle\sin (\theta) \frac{-}{2}_{\frac{\pi}{2}}^{2}=\frac{2 G \lambda d}{\left(x^{2}+d^{2}\right)}\right.
\end{aligned}
$$

Fig. 2.51 Geometry for calculation of the gravity anomaly of an infinitely long linear mass distribution with mass m per unit length extending horizontally along the y-axis at depth z.

Lowrie, 2007

Gravity Anomaly: Horizontal Cylindrical Source

Now, for a horizontal cylindrical source extending in-and-out of this page, we assume that distances to the \sim flat (ground) surface (i.e., x and d) are much larger than the diameter of the cylinder, R. So, (x, d) » R.

Under these conditions, we can fill the cylinder's cross-section (below left) with infinitely many slender "rods", in which case, the total mass per unit length for the circular cross-section, $\lambda=\Delta \rho\left(\pi R^{2}\right)$, and:

$$
\Delta g_{z}=2 \pi G R^{2} \Delta \rho \frac{d}{\left(x^{2}+d^{2}\right)}
$$

Syncline: For a 2 km diameter "cylindrical" axial core ($r=1 \mathrm{~km}$) located at 2 km depth (d), and having a density contrast $\Delta \rho$ of $1000 \mathrm{~kg} / \mathrm{m}^{3}$:

$$
\Delta g_{z, \max } \sim 21 \mathrm{~m}-\mathrm{Gal}, \text { or } 21,000 \mu \text {-Gal }
$$

This is $3 X$ larger than for a similarly located spherical body with similar density variation, because the effect of the "infinitely" long cylinder - the anomaly also decays slower than the more spatially restricted sphere!

Gravity Anomaly: Vertical Cylindrical Source

As with Terrain Correction, we proceed as follows, noting that our anomaly is located below station height :
Mass of differentialelement, $\quad d m=(r d \varphi) d r d z$
so that

$$
\begin{equation*}
d g_{c y l}=-\frac{G d m}{\left(r^{2}+z^{2}\right)} \cos \theta=-\frac{G(\rho r d r d z d \varphi)}{\left(r^{2}+z^{2}\right)}\left(\frac{z}{\sqrt{\left(r^{2}+z^{2}\right)}}\right)=-G \rho\left(\frac{(r d r)(z d z) d \varphi}{\sqrt{\left(r^{2}+z^{2}\right)^{3}}}\right) \tag{2a}
\end{equation*}
$$

So,

$$
\begin{align*}
\delta g_{c y l} & =-G \rho \int_{\varphi=0}^{2 \pi} d \varphi \cdot \int_{r=0}^{R}\left(\int_{z=h_{1}}^{h_{2}} \frac{z d z}{\sqrt{\left(r^{2}+z^{2}\right)^{3}}}\right) r d r \\
& =-2 \pi G \rho \int_{r=0}^{R}\left(\frac{r}{\sqrt{\left(r^{2}+h_{1}^{2}\right)}}-\frac{r}{\sqrt{\left(r^{2}+h_{2}^{2}\right)}}\right) d r \\
& =-2 \pi G \rho\left[\left(\sqrt{\left(0+h_{1}^{2}\right)}-\sqrt{\left(0+h_{2}^{2}\right)}\right)-\left(\sqrt{\left(R^{2}+h_{1}^{2}\right)}-\sqrt{\left(R^{2}+h_{2}^{2}\right)}\right)\right] \\
& =2 \pi G \rho\left[\left(\sqrt{\left(R^{2}+h_{1}^{2}\right)}-h_{1}\right)-\left(\sqrt{\left(R^{2}+h_{2}^{2}\right)}-h_{2}\right)\right] \tag{2b}
\end{align*}
$$

In principle can calculate an anomaly for a density anomaly with any arbitrary body shape using:

$$
\delta g_{z}=\oiiint_{V}\left\{\frac{G \delta \rho}{r^{2}} \hat{r}\right\} \cdot \hat{k} d V
$$

Recall for a sphere:

$$
\Delta g_{z}=\frac{4}{3} \pi G R^{3} \Delta \rho \frac{d}{\left(x^{2}+d^{2}\right)^{\frac{3}{2}}}
$$

∞ horizontal cylinder:

$$
\Delta g_{z}=2 \pi G R^{2} \Delta \rho \frac{d}{\left(x^{2}+d^{2}\right)}
$$

Vertical cylinder (top at h_{1}, bottom at h_{2}):

$$
\Delta g_{z}=2 \pi G \Delta \rho\left(h_{2}-h_{1}+\sqrt{R^{2}+h_{1}^{2}}-\sqrt{R^{2}+h_{2}^{2}}\right)
$$

Gravity Anomaly: Fault offset slab

Recall:

$$
\delta g_{z}=\oiiint_{V}\left\{\frac{G \delta \rho}{r^{2}} \hat{r}\right\} \cdot \hat{k} d V
$$

Gravity Anomaly: Fault offset slab

Substituting in Equation (2.68) and noting that $t=$ $\left(z_{2}-z_{1}\right)$, we obtain
$g=2 \gamma \rho\left\{(\pi / 2+\beta) t+\left(\theta_{2}-\beta\right)\right.$
$x\left(z_{2}+x \sin \beta \cos \beta\right)$
$-\left(\theta_{1}-\beta\right)\left(z_{1}+x \sin \beta \cos \beta\right)$
$\left.+x \cos ^{2} \beta \ln \left(r_{2} / r_{1}\right)\right\}$

$$
\begin{align*}
\Delta g_{\text {fault }}=2 \gamma \rho\{ & (\pi t / 2)+\left(z_{2} \theta_{2}-z_{1} \theta_{1}\right) \\
& +x\left(\theta_{2}-\theta_{1}\right) \sin \beta \cos \beta \\
& \left.+x \cos ^{2} \beta \ln \left(r_{2} / r_{1}\right)\right\} \tag{2.69}
\end{align*}
$$

Figure 2.30. Gravity effect of a semiinfinite slab. $t=300 \mathrm{~m}, \alpha=90^{\circ}$ except where otherwise noted on the curves, $\rho=1 \mathrm{gm} / \mathrm{cm}^{3}$.

Gravity Anomaly: Surface Fault Offset Layer

