

Figure 8.8. Distortion of current flow at a plane boundary when $\rho_{1}<\rho_{2}$.
using Ohm's law to express these results in terms of the current density, we obtain

$$
J_{x_{1}} \rho_{1}=J_{x_{2}} \rho_{2} \quad \text { and } J_{x_{1}}=J_{1_{2}}
$$

Dividing these expressions, we have
$\rho_{1}\left(J_{x_{1}} / J_{z_{1}}\right)=\rho_{2}\left(J_{x_{2}} / J_{z_{2}}\right)$ or $\rho_{1} \tan \theta_{1}=\rho_{2} \tan \theta_{2}$ so that

$$
\begin{equation*}
\tan \theta_{2} / \tan \theta_{1}=\rho_{1} / \rho_{2} \tag{8.16}
\end{equation*}
$$

Thus the current lines are bent in crossing the boundary. If $\rho_{1}<\rho_{2}$, they will be bent toward the normal and vice versa.
$\rho_{2}>\rho_{1}$: Lower curvature in medium 2, $\boldsymbol{\theta}_{2}<\boldsymbol{\theta}_{1}$

$\rho_{2}<\rho_{1}$: Higher curvature in medium 2, $\boldsymbol{\theta}_{2}>\boldsymbol{\theta}_{1}$

NOTE: Opposite to effect of velocity in Snell's Law of refraction - and Tangent, not Sine of "incident" angle, $\boldsymbol{\theta}$!!!

Proffling maintains constant a-spacing while moving the array laterally. Wenner array $\rho_{\text {app }}$ for a vertical contact:

$$
\rho=100 \Omega \mathrm{~m}
$$

$$
\rho=10 \Omega \mathrm{~m}
$$

Vertical Contact

(b)

Map

Sounding maintains a constant center while increasing the a-spacing. Wenner array $\rho_{\text {app }}$ for a vertical contact:

$$
\rho=100 \Omega \mathrm{~m}
$$

$$
\rho=10 \Omega \mathrm{~m}
$$

(c)

(a)

FIGURE 5.25g (b)
Introduction to Applied Geophysics
Copyrigh © 2006 W. W. Norton \& Company

Resistivity "Pseudosection"

- Measurements are a combination of
profiling (different x) \&
sounding (different a-spacings)
- Plot / contour $\rho_{a p p}$ versus distance x and a-spacing increment n, where $n=a / a_{0}$ and a_{0} is smallest a-spacing

Station 32

Station 18

Resistivity Computer

One technique used to extend horizontally the area covered by the survey, particularly for a system with a limited number of electrodes, is the roll-along method. After completing the sequence of measurements, the cable is moved past one end of the line by several unit electrode spacings. All the measurements which involve the electrodes on part of the cable which do not overlap the original end of the survey line are repeated (Figure 6).

- Original datum point
+ New datumpoint

Figure 6. The use of the roll-along method to extend the area covered by a survey.
(This image from the West Cache fault, collected six years ago, is an example of an apparent resistivity pseudo-section):

Dipole-Dipole Array

(a)

(b)

$$
\begin{aligned}
& \text { Pseudosection } \\
& \text { Plotting Point }
\end{aligned}
$$

Figure 8. The sensitivity patterns for the (a) Wenner (b) Wenner-Schlumberger and (c) dipole-dipole arrays.

Rectangular block model
a).

Measured apparent resistivity in ohm-m. Unit Electrode Spacing $=20.0 \mathrm{~m}$.
b)

Measured apparent resistivity in ohm-m.
C)

Dipole-dipole array

d). Actual model

Figure 7. The apparent resistivity pseudosections from 2-D imaging surveys with different arrays over a rectangular block.

Pseudosection

True inversion of the data will yield a much more reliable image (for much the same reasons that depth migration does in the seismic case!)

Inversion

East Cache Valley fault zone near Paradise

Resistivity pseudosection from the western trench location

Using resistivity sounding \& two layer model:

Vertical sounding at 25.7 m . Pink line is measured; Blue line modeled using Excel spreadsheet based on Burger's Table 5-4. Modeling with RESIST (with interpolated a-spacing) differs in resulting estimates of thickness, but the differences are small.

Can model equally well by using

- constant thickness with varying the resistivities, OR
- using constant resistivities with varying the thickness !!

Because these data did not go to a small enough a-spacing to nail down ρ in the upper layer.

Layer-over-halfspace modeling suggested a variablethickness upper layer with $\rho \sim 100 \Omega-\mathrm{m}$ (Bonneville deposits) over $\rho=17$ (Great Salt Lake fm). The data imply the trenched geomorphology represents a beach burm deposit.

East Cache fault in Green Canyon

Pseudosection and inversion can be very similar though ...

West Cache fault

Apparent resistivity pseudo-section

(collected four years ago)

Measurements at WCF included both DC resistivity and IP (induced potential) ... Here, inverted.

Results plus conditions suggested that the DC resistivity/IP inverted models are not imaging lithology variations but wetting!
Then the west-side high resistivity could be low soil moisture, resulting from retardation of snow-melt in the forested region, while the high- ρ mid-layer on the east side might sit between the water table and a late spring wetting event, rather than a 80-m long +1 wedge of colluvium that is lithologieatly different from hanging-wall loess. The way totest this possibility would be to repeat the experiment during summer, afker the ground has had time to dry out a bit!

a).

Fault and block model

Ps.z

b). Standard least-squares smoothness-constrain

C). Robust inversion model constrain

Depth Iteration 6 RMS error - 0.4 \%

Lithology application: Sand/clay in a study of agricultural groundwater contaminant plumes.

a).

Odarslou Dyke

Mapping an intrusive dike feature...

Mapping cave locations in karst terrain.

