DC Electrical Resistivity

Method:
* Apply a direct current (or very low frequency alternating
current) to the Earth using a dipole current source/sink

* Measure voltage across a pair of electrode probes
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The measured voltage represents a difference in potential...
Advantage: Instrumentation doesn’t require great sensitivity!



DC Electrical Resistivity

Similar to gravity and magnetics, DC resistivity is a potential field method.

Maxwell " s Equations & Lorentz Force:

VB = 0, Gauss ' Law for Magnetism (1a)
V-H =0, Gauss' Law Variation [under the assumption: H~B, when (uM,_ )<B] (1la')
VE = i, Gauss ' Law for Electrostatics (1b)
€
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VXE = RFTaE Faraday-Maxwell Law (1c)
oo -~ OE - _ di -~ _E ,
VXB = ulJ + | Ampere-Maxwell Law, where ] = =— = GE = . (Ohm's Law) (1d)
F = q{_];" + q(v XE)L Lorentz Force (1e)
Poisson ' s Equation for Electrostatics : . .
Assuming no time-variation in electric and magnetic fields, i.e., jTB =0 = gt—E, we get, V X E=0.
Thus, there exists a scalar potential, V', such that E=VV , and therefore, by Gauss' Law (1b):
Vv = TG (Poisson's Equation) (1f)

Laplace' s Equation for Electrostatics :
If we further assume no significant free charge distribution within the crust, o =0, we obtain:
V'V =0 (Laplace's Equation) (1g)



DC Electrical Resistivity
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J =oFE E _VV 3o foragiven current i and electrode
0 0 spacing d (defines J), V" depends on p



Resistivity properties of rocks & soils:
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Water Salinity in Pore Fluids



Example: Current source / in an infinite homogeneous
medium with constant resistivity p

We expect V'=0atr=o , &
equipotential surfaces to be spherical around the source (similar to gravity!)

So, by Ohm's Law: j=—o’§V=—Gﬂf=G—A?

2
or r
for some unknown, A. We can express A in terms of the ground current,

[ = 47r%] = AncA?

so that, A= I _1p

471'(7_471'

Now, integrating oV/or = A/ = lp/(47r°), we finally obtain:

4 7rV
V= /_p or, equivalently: O = "

So given a known I & a measured voltage at known v,
we can solve for a constant resistivity p.



More realistic representation of Earth is a halfspace:
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Same current is forced into half the volume so
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And for two current electrodes +7 and -/, total potential
Is given by the sum of the two point sources

V = Ip _ Ip _IIO h—h
2o, 2mr, 2w\




In practice we measure voltage difference at two points,

AV =V -V,

AV = Ip(r2a_ria _
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We are really interested however in imaging a subsurface
iIn which p varies. The potentials integrate p over the

volume so they provide information relevant for doing
exactly that!
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Electrode Arrays:. Arrangement of the electrodes

Wenner Array. (Classical: common in older surveys)

Constant spacing (“a-spacing”):
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Wenner-Lee Array.
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Additional voltage measurements to a center electrode
reduce sensitivity to near-surface resistivity variations

Schilumberger Array.
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Also less sensitive to near-surface resistivity variations,
& required half the effort to move electrodes for
sounding studies (of vertical changes in resistivity)



Dipole-Dipole Array:.

] ]

Y Y Y Y

Requires larger current source, but fairly common now
with the development of multichannel instruments

Pole-Dipole Array:.
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Most sensitive to resistivity in the shell between radii
r, & r, — commonly used for tunnel/karst detection



Halfspace Current Distribution

Current Density, J = OE % = —V—pV (1a)

Horizontal current density at point P due to point electrodes at C, and C, is
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If this point were on a plane equidistant from electrodes C, and C,, then x=L/2=(L—x), then
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| Telford et al. 1990

fFigure 8.5. Determining the current density in uniform ground below two surface
electrodes.



So, the fraction of current flowing below a depth of z,(to o0) would be,
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Modeling

Current penetration for a layer over half-space:
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Current penetration into the second layer depends on depth of layer interface,
& resistivities. Fraction of total current that penetrates below depth of an

interface, z, is (for a Wenner array):
%—tan‘l(_z(zn +1)Z )]
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where a is electrode spacing, and k=P2=P
Py, + P



Electrode Spacing = 50m i Electrode Spacing = 50 m
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Layer over half-space:
Apparent resistivity for a Wenner array:
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Wenner Array: “Universal Curves”
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Two-layer over half-space: Apparent resistivity for the
for various half-space resistivity values.
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Two-layer over half-space: Dependence of apparent resistivity
on the thickness of the middle layer.
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May or may not pick up sandwiched layer depending on thickness, contrast



For 3+ layers:

Rule of thumb: If layer thickness < 0.1 the depth to top of layer, it cannot be
resolved. Also, solution from sounding can be highly non-unique

But resolution also depends on resistivity contrast: thicker layers may not be
resolved if contrast is too small; transition of apparent resistivity versus
a-spacing is much sharper for a resistive layer over a conductive layer than

for the opposite.
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