A mechanical suction mechanism for liquid iron entrainment into the lowermost Mantle


Perturbations in the Earth’s rotation rate at decadal time periods strongly favor the existence of dissipative coupling at the Core–Mantle Boundary (CMB). Here, we explored the plausibility of maintaining a conducting layer on the mantle-side of the CMB, which can couple the outer core and mantle through Lorentz torques. We propose a suction mechanism that maintains a porous medium on the mantle side of the CMB, with the interconnected pore-space partly or entirely filled with liquid iron up to a thickness of 1 km. The suction arises from the deviatoric stresses supported by the mantle-solid in regions of mantle downwelling. Infiltration of liquid iron occurs by percolation, but is inhibited by the rate of viscous dilation of the solid mantle. Our model enables core-mantle material exchange, and maintains a thin conducting layer that has seismic detection potential. Our model is only marginally satisfactory in explaining the inferred CMB coupling.


  • [PDF] Kanda, R. V. S., and D. J. Stevenson (2006), Suction mechanism for iron entrainment into the lower mantle, Geophys. Res. Lett., 33, L02310, doi:10.1029/2005GL025009.

Up Arrow
Back to Menu